UDC 517.55

LARGE ENTROPY MEASURES OF HÉNON-LIKE MAPS

BOYMURODOV S. I.

V.I. Romanovskiy Institute of Mathematics Uzbekistan Academy of Sciences, Tashkent, Uzbekistan

sboymurodov.research@gmail.com

RESUME

We study the Lyapounov exponent of ergodic invariant measures for Henon-like maps under appropriate entropy conditions. Specifically, we consider an ergodic measure ν for a Henon-like map f satisfying $h_{\nu}(f) > \log d_{p-1}^+$ when $d_{p-1}^+ < d$. We establish that ν has at least p strictly positive Lyapounov exponents bounded below by $(h_{\nu}(f) - \log d_{p-1}^+)/2k$. These results provide insight into the interplay between entropy, degree growth, and Lyapounov exponents in the dynamical behavior of Henon-like maps.

Key words: Entropy, Horizontal-like map, Lyapounov exponent.

Introduction

In this paper, we investigate invertible horizontal-like in higer dimension. A horizontal-like map is essentially a holomorphic map defined on a bounded convex domain $D \subset \mathbb{C}^k$, exhibiting an expanding behavior in p directions while contracting in the remaining k-p directions. Precise information is formally provided in Definition 1. The dynamical degrees of horizontal-like maps are play important role in our work. Consider convex, bounded open subsets $M' \in M$ and $N' \in N$, and let $D := M \times N$ and $D' := M' \times N'$ such that $f^{-1}(D) \subset M' \times N$ and $f(D) \subset M \times N'$. For each $0 \le s \le p$, we define the dynamical degree d_s^+ of f as follows:

$$d_s^+ = d_s(f) := \limsup_{n \to \infty} \left\{ \sup_{S} \|(f^n)_* S\|_{M' \times N} \right\}^{1/n}$$

where the supremum is taken over all positive closed horizontal currents S of bidegree (k-s,k-s) on $D' = M' \times N'$ with the mass $||S||_{D'} = 1$. For a precise behaviour of these dynamical degrees, see [1, 3] and [2] for the case of polynomial-like maps. In this work we show that when the main dynamical degree of Hènon-like map f is larger than other ones, the ergodic, f invariant measure ν with satisfying $h_{\nu} > \log d_{p-1}^+$ is hyperbolic: it admits p strictly positive and k-p strictly negative Lyapounov exponents.

Preliminaries

In this section, we recall several fundamental definitions and preliminary results that will be used in the subsequent sections of the paper.

Let p and k be integers with $k \geq 2$ and $1 \leq p < k-1$. Let $M \subset \mathbb{C}^p$ and $N \subset \mathbb{C}^{k-p}$ be two bounded, convex domains. Consider the product domain $D := M \times N \subset \mathbb{C}^k$. We define the *vertical boundary* of D as $\partial_v D := \partial M \times N$ and the *horizontal boundary* as $\partial_h D := M \times \partial N$. A subset $E \subset D$ is said to be *vertical* if its closure \overline{E} does not intersect $\overline{\partial_v D}$, and *horizontal* if \overline{E} does not intersect $\overline{\partial_h D}$.

We now proceed to introduce the concept of a horizontal-like map f on the domain D.

Let π_1 and π_2 be the canonical projections of the product space $D \times D$ onto its first and second factors, respectively.

Definition 1. A map f in D is said to be a horizontal-like map if it satisfies the following properties:

1. The graph Γ of f forms an irreducible submanifold of $D \times D$;

- 2. The restriction of the first projection $\pi_1|_{\Gamma}$ is injective, while the second projection $\pi_2|_{\Gamma}$ has finite fibers;
- 3. The closure $\overline{\Gamma}$ does not intersect either $\overline{\partial_v D} \times \overline{D}$ or $\overline{D} \times \overline{\partial_h D}$.

Generally, such a map is not defined on the whole of D, but rather on a vertical subset $f^{-1}(D) \subset D$. The map f then takes values within a horizontal subset $f(D) \subset D$.

An invertible horizontal-like map f is referred to as a *Henon-like map* when the restriction of π_2 to the graph Γ , i.e., $\pi_{2|\Gamma}$, is injective. In the following, we focus our analysis on Henon-like maps. Let us denote by $f^n := f \circ f \circ \cdots \circ f$ (applied n times) the n-th iterate of the map f, and similarly, by $f^{-n} := f^{-1} \circ \cdots \circ f^{-1}$ (applied n times) its inverse. Define the *filled Julia sets* \mathcal{K}_+ and \mathcal{K}_- as

$$\mathcal{K}_+ := \bigcap_{n \ge 0} f^{-n}(D), \quad \mathcal{K}_- := \bigcap_{n \ge 0} f^n(D).$$

These sets describe the regions of points that remain confined within D under repeated iteration by f and f^{-1} , respectively. The boundaries of \mathcal{K}_+ and \mathcal{K}_- are known as the *Julia sets* of f and f^{-1} . Additionally, define $\mathcal{K} := \mathcal{K}_+ \cap \mathcal{K}_-$, which is a compact subset of D. This set satisfies the invariance properties:

$$f^{-1}(\mathcal{K}_+) = \mathcal{K}_+, \quad f(\mathcal{K}_-) = \mathcal{K}_-, \quad f^{\pm}(\mathcal{K}) = \mathcal{K}.$$

The operator $f_* := (\pi_{2|\Gamma})_* \circ (\pi_{1|\Gamma})^*$ acts continuously on horizontal currents. According to [1, Proposition 3.2], there exists an integer $d \ge 1$ such that for any horizontal positive closed current S, we have the relation

$$||f_*(S)||_h = d||S||_h,$$

The integer d is referred to as the main dynamical degree of the map f.

We now define the other dynamical degrees of the map f in relation to currents. Consider convex, bounded open subsets $M' \in M$ and $N' \in N$, and let $D := M \times N$ and $D' := M' \times N'$ such that $f^{-1}(D) \subset M' \times N$ and $f(D) \subset M \times N'$. Thus, the restriction of f to $M' \times N'$ remains a horizontal-like map. A current on D is classified as vertical (resp. horizontal) if its support lies in a vertical (resp. horizontal) in D. For each $0 \le s \le p$, we define the dynamical degree d_s^+ of f as follows:

$$d_s^+ = d_s(f) := \limsup_{n \to \infty} \left\{ \sup_{S} \| (f^n)_* S \|_{M' \times N} \right\}^{1/n}$$

where the supremum is taken over all positive closed horizontal currents S of bidimension (s, s) on $D' = M' \times N'$ with the mass $||S||_{D'} = 1$. Similarly, for each $0 \le s \le k - p$, we define the dynamical degree d_s^- of f^{-1} as:

$$d_s^- = d_s(f) := \limsup_{n \to \infty} \left\{ \sup_{R} \| (f^n)^* R \|_{M \times N'} \right\}^{1/n}$$

where the supremum is taken over all positive closed vertical currents R of bidimension (s, s) on $D' = M' \times N'$ such that $||R||_{D'} = 1$.

Below are some properties of dynamical degrees identified above. It is proved in [1], Lemma 3.5 that the dynamical degrees $d_0^+ = d_0^- = 1$ and $d_p^+ = d_{k-p}^- = d$. Moreover, the lim sup in the definition of d_s^+ and d_s^- can be replaced by lim; see [3], Lemma 3.6. The monotonicity of the dynamical degrees d_s^+ and d_s^- is established in [3], that is, $d_s^+ \leq d_{s+1}^+$ for $0 \leq s \leq p-1$ and $d_s^- \leq d_{s+1}^-$ for $0 \leq s \leq k-p-1$. We fix integers $1 \leq p < k$, a bounded and convex domain $D = M \times N \subset \mathbb{C}^p \times \mathbb{C}^{k-p}$ and the convex open sets $M'' \in M$ and $N'' \in N' \in N$ are assumed to be sufficiently close to M and N. Use $\omega_{|_{M'' \times N}}$ denotes the restriction to $M'' \times N$ of the standart Kähler form ω on \mathbb{C}^k .

Lemma 2. (See [1], Lemma 5.5) Let f be a Hènon-like map on $D = M \times N \subset \mathbb{C}^p \times \mathbb{C}^{k-p}$, and M', M'', N', N'', d_s^+ be as above. Let $0 \le s \le p-1$ be arbitrary integer and σ be a constant such that $\sigma > d_s^+$. Then, there exists a constant A > 0 such that for any positive closed current Φ of bidemention (s, s), supported on $M \times N'$, and for all integers $m_1 \ge m_2 \ge \cdots \ge m_s \ge 0$ the following inequality holds:

$$\int \Phi \wedge (f^{m_1})^* \, \omega_{|_{M'' \times N}} \wedge \cdots \wedge (f^{m_s})^* \, \omega_{|_{M'' \times N}} \leq A \sigma^{m_1} \|\Phi\|_D.$$

This result demonstrates the exponential growth control of iterates of the vertical forms $\omega_{|_{M''\times N}}$ under the pullback by f, where Φ is bounded by the constant A and the exponential factor σ^{m_1} , depending on the current's norm $\|\Phi\|_D$. We now introduce some concepts related to the entropy of Henon-like maps, which will play a central role in this part.

Definition 3. Let f be a Hénon-like map on D, and let n be an integer.

- 1. A subset E of D is called (n,ε) -separated if the map f^j is well-defined on E such that $f^j(E)\subset D'':=$ $M'' \times N''$ for $0 \le j \le n$ and for any two distinct points $x, y \in E$, $\operatorname{dist}(f^j(x), f^j(y)) \ge \varepsilon$ for at last one $0 \le j \le n$.
- 2. For $X \subset D$, the topological entropy of the map f restricted to X is defined as:

$$h_{top}(f,X) := \sup_{\varepsilon > 0} \limsup_{n \to \infty} \frac{\log \max \# \{ E \subset X \mid E \text{ is } (n,\varepsilon) \text{-separated} \}}{n}.$$

We have the following version of the Gromov inequality; see [2, 4].

Proposition 4. ([1], Proposition 5.7) Let f be a Hènon-like map on D, and let $0 \le s \le p-1$ be arbitrary integer. If σ is a constant satisfying $\sigma > d_s^+$ and X is a horizontal subvariety of D of dimension s, then for every $\varepsilon > 0$, there exists a constant $A_{\varepsilon} > 0$ such that every (n, ε) -separated subset in X contains at most $A_{\varepsilon} \sigma^n$ points. Consequently, it follows that the topological entropy of f restricted to X satisfies:

$$h_{top}(f, X) \le \log d_s^+.$$

Let X be a complex manifold of dimension k. Consider a smooth dynamical system $T: X \to X$ and an invariant ergodic probality measure ν . The map T induces a linear map H from the tangent space at z to the tangent space of T(z), i.e. $H: X \to GL(\mathbb{C}, k)$. For $n \geq 0$ define

$$H_n(z) := H(z) \cdot H(T(z)) \cdot \cdot \cdot H(T^{n-1}(z)).$$

We call H_n the multiplicative cocycle over X generated by H. For $n, m \geq 0$ it is satisfy the identity

$$H_{n+m}(z) = H_n(T^m(z))H_m(z).$$

Let us recall famous Oseledec theorem.

Theorem 5.(Oseledec) Let $T: X \to X$, ν and the cocycle H_n be as above. Assume that ν is ergodic and that $\log^+ ||H^{\pm}(z)||$ are in $L^1(\nu)$, where $\log^+ := \max\{\log, 0\}$. Then there is an integer l, real numbers $\Lambda_1 < \Lambda_2 < \cdots < \Lambda_l$, and for ν - almost every z, a unique decomposition of \mathbb{C}^k into a direct sum of linear subspaces

$$\mathbb{C}^k = \bigoplus_{i=1}^l \mathscr{E}_i(z)$$

such that

- 1. dim \mathcal{E}_i does not depend on z.
- 2. The decomposition $H: \mathcal{E}_i \mapsto \mathcal{E}_i \circ T$ is invariant.
- 3. For any vector $v \in \mathcal{E}_i(z) \setminus \{0\}$ we have locally uniformly:

$$\lim_{n \to \infty} \frac{1}{n} \log ||H_n(z) \cdot v|| = \Lambda_i.$$

4. For $\mathscr{I} \subset \{1,2,...,l\}$, define $\mathscr{E}_{\mathscr{I}} := \bigoplus_{i \in \mathscr{I}} \mathscr{E}_i(z)$. The angle between $\mathscr{E}_{\mathscr{I}}(z)$ and $\mathscr{E}_{\mathscr{I}'}(z)$ is a tempered while $\mathcal{I}, \mathcal{I}'$ are disjoint, i.e

$$\lim_{n \to \infty} \frac{1}{n} \log \sin |\angle (\mathscr{E}_{\mathscr{I}}(T^n(z)), \mathscr{E}_{\mathscr{I}'}(T^n(z)))| = 0.$$

If T is invertable, above decomposition is the same for T^{-1} and exponents Λ_i are replaced by $-\Lambda_i$. The corresponding constants Λ_i are called Lyapounov exponents of T with respect to ν and dim \mathscr{E}_i is the multiplicity

Now we construct s dimensional complex subspace \mathscr{F} in the sequel. According to the Oseledec-Pesin theory, there is a decomposition $\mathscr{T}_z = \mathscr{E}_z \oplus \mathscr{F}_z$ for ν almost every z and there exists Borel set $\mathcal{M} \in \Omega$ that is $\nu(\mathcal{M}) \geq 1/2$ with satisfy

$$||DT^{-1}(v)|| \ge e^{-\lambda_1} ||v||, ||DT^{-1}(u)|| \le e^{-\lambda_2} ||u||, \angle (\mathscr{E}_{T^{-n}(z)}, \mathscr{F}_{T^{-n}(z)}) \ge \beta e^{-n\alpha}$$

for $v \in \mathscr{E}_z$, $u \in \mathscr{F}_z$, $z \in \mathcal{M}$, and $n \geq 0$. We will establish precise conditions in the next lemma for the positive parameters $\lambda_1, \lambda_2, \alpha$, and β , defining λ_2 as $\lambda_1 + 7\alpha$. Let γ be a small positive constant such that $\gamma \ll \beta$ and $\gamma \ll \varepsilon$, where ε is the constant associated with α as mentioned earlier. Define \mathcal{D}_{z-n} as the small ball centered at $z_{-n} := T^{-n}(z)$ with radius $\gamma e^{-n\lambda_2}$ within $\mathscr{E}_{z_{-n}}$. Our focus is on the graphs in $\mathscr{T}_{z_{-n}} = \mathscr{E}_{z_{-n}} \oplus \mathscr{F}_{z_{-n}}$ of holomorphic maps over $\mathcal{D}_{z_{-n}}$.

Lemma 6. For every $z \in \mathcal{M}$, there exist holomorphic maps $g_n : \mathcal{D}_{z_{-n}} \to \mathscr{F}_{z_{-n}}$ with graph $\Gamma_{z_{-n}}$ such that $g_n(0) = 0$, $||Dg_n|| \le e^{-4n\alpha}$, and T maps $\Gamma_{z_{-n-1}}$ into $\Gamma_{z_{-n}}$.

Proof. The proof of this lemma proceeds by induction. For n=0, it suffices to select $g_0=0$. The subspace $\Gamma_{z_{-n}}$ will be obtained as an open subset within $T^{-1}\left(\Gamma_{z_{-n+1}}\right)$. Consider the map T^{-1} defined on a small neighborhood of z_{-n+1} , which maps into a neighborhood of z_{-n} . In the dynamical coordinates associated with $\mathcal{I}_{z_{-n+1}}$ and $\mathscr{T}_{z_{-n}}$, the map T^{-1} can be expressed as:

$$T^{-1}(z) = \mathcal{L}(z) + \mathcal{R}(z)$$
 where $\mathcal{L} = (\mathcal{L}_1, \mathcal{L}_2)$ and $\mathcal{R} = (\mathcal{R}_1, \mathcal{R}_2)$

Here, $\mathcal{L}(z)$ represents the linear component of T, specifically the differential DT^{-1} at z_{-n+1} , while $\mathcal{R}(z)$ denotes the remainder, which is of order ≥ 2 in z. Let $\mathcal{L}_1: \mathscr{E}_{z_{-n+1}} \to \mathscr{E}_{z_{-n}}$ and $\mathcal{L}_2: \mathscr{F}_{z_{-n+1}} \to \mathscr{F}_{z_{-n}}$. We have the following bounds:

$$\|\mathcal{L}_1(z')\| \ge e^{-\lambda_1} \|z'\|, \quad \|\mathcal{L}_2(z'')\| \le e^{-\lambda_2} \|z''\|$$

for $z' \in \mathscr{E}_{z_{-n+1}}$, and for $z'' \in \mathscr{F}_{z_{-n+1}}$, respectively. The derivatives of T^{-1} are uniformly bounded in standard coordinates. Considering the distortions in dynamical coordinates, we obtain $\|D\mathcal{R}(z)\| \le Ae^{6n\alpha}\|z\|$, where A > 0is independent of γ , n, and α . Let z=(z',z'') and w=(w',w'') be points in $\mathscr{E}_{z-n+1} \oplus \mathscr{F}_{z-n+1}$ contained in \mathcal{D}_{z-n+1} . Hence, ||z|| and ||w|| are smaller than $2\gamma e^{-(n-1)\lambda_2}$. Set $\widetilde{z}=(\widetilde{z}',\widetilde{z}'')=T^{-1}(z)$ and $\widetilde{w}=(\widetilde{w}',\widetilde{w}'')=T^{-1}(w)$. Utilizing the estimates for \mathcal{L}_1 , $D\mathcal{R}$, and Dg_{n-1} , we derive:

$$\|\widetilde{z}' - \widetilde{w}'\| \ge \|\mathcal{L}_1(z') - \mathcal{L}_1(w')\| - \|\mathcal{R}_1(z) - \mathcal{R}_1(w)\| \ge$$

$$\ge e^{-\lambda_1} \|z' - w'\| - 2\gamma A e^{6n\alpha} e^{-(n-1)\lambda_2} \|z - w\| \ge$$

$$> e^{-\lambda_1} \|z' - w'\| - 4\gamma A e^{6n\alpha} e^{-(n-1)\lambda_2} \|z' - w'\|,$$

leading to

$$\|\widetilde{z}' - \widetilde{w}'\| \ge e^{-(\lambda_1 + \alpha)} \|z' - w'\|$$

since γ and α are small and $\alpha \ll \lambda_1$. Consequently, $T^{-1}(\mathcal{D}_{z_{-n+1}})$ is the graph of a holomorphic map g_n over an open subset \mathcal{D} of $\mathscr{E}_{z_{-n}}$. The final estimate for w'=0 implies that \mathcal{D} includes the ball $\mathcal{D}_{z_{-n}}$. Furthermore, we have

$$\begin{split} \|\widetilde{z}'' - \widetilde{w}''\| &\leq \|\mathcal{L}_2(z'') - \mathcal{L}_2(w'')\| + \|\mathcal{R}_2(z) - \mathcal{R}_2(w)\| \\ &\leq e^{-\lambda_2} \|z'' - w''\| + 2\gamma A e^{6n\alpha} e^{-(n-1)\lambda_2} \|z - w\| \\ &\leq e^{-\lambda_2} e^{-4(n-1)\alpha} \|z' - w'\| + 4\gamma A e^{6n\alpha} e^{-(n-1)\lambda_2} \|z' - w'\|, \end{split}$$

implying that $\|\widetilde{z}'' - \widetilde{w}''\| \le e^{-4n\alpha} \|\widetilde{z}' - \widetilde{w}'\|$ given that $\alpha \ll \lambda_1$ and γ is small. This concludes the proof of the lemma.

Let \mathscr{F}'_z denote the orthogonal complement of \mathscr{E}_z . We use coordinate systems on \mathscr{F}'_z that induce the standard metric. Define $\mathcal{D}'_{z_{-n}}$ as the ball centered at 0 with radius $\gamma' e^{-n\lambda_3}$ in $\mathscr{E}_{z_{-n}}$, where $\gamma' > 0$ is suitably small and $\lambda_3 = \lambda_1 + 10\alpha$. We show that that $\Gamma_{z_{-n}}$ contains a flat graph $\Gamma'_{z_{-n}}$.

Corollary 7. For every $z \in \mathcal{M}$, the set $\Gamma_{z_{-n}}$ contains the graph $\Gamma'_{z_{-n}}$ of a holomorphic map $g'_n : \mathcal{D}'_{z_{-n}} \to \mathcal{D}'_{z_{-n}}$ $\mathscr{F}'_{z_{-n}}$ such that $g'_n(0) = 0$ and $||Dg'_n|| \lesssim e^{-n\alpha}$.

Proof. Using the coordinate systems on \mathscr{E}_{z-n} , \mathscr{F}_{z-n} , and \mathscr{F}'_{z-n} , let $\tau:\mathscr{E}_{z-n}\oplus\mathscr{F}_{z-n}\to\mathscr{E}_{z-n}\oplus\mathscr{F}'_{z-n}$ denote the linear map of coordinate change. Given that the angle between \mathscr{E}_{z-n} and \mathscr{F}_{z-n} exceeds $\beta e^{-n\alpha}$, we can express τ as (τ',τ'') with $\|\tau'(z)-z'\|\lesssim e^{n\alpha}\|z''\|$ and $\|\tau''(z)\|\leq \|z''\|$ for z=(z',z'') in $\mathscr{E}_{z-n}\oplus\mathscr{F}_{z-n}$. This corollary can be proved similarly to apply previous lemma, but by replacing T^{-1} with τ . We omit the details here. \square

Main result

In this section we give our main result with is as following.

Main Theorem. Let f be an Hénon-like map with $d_{p-1}^+ < d$ and let ν be an ergodic f-invariant measure satisfying $h_{\nu}(f) > \log d_{p-1}^+$. Then ν admits p strictly positive Lyapounov exponents larger than or equal to $(h_{\nu}(f) - \log d_{p-1}^+)/2k$. In particularly, if $d_{k-p-1}^- < d$ and $h_{\nu}(f) > \log d_{k-p-1}^-$ then ν admits k-p strictly negative ones with are smaller than or equal to $-(h_{\nu}(f) - \log d_{k-p-1}^-)/2k$.

Let $\mathcal{D}_{-n}(z_0,\varepsilon)$ denote the Bowen $(-n,\varepsilon)$ -ball with center z_0 , i.e. the set of the points z such that $f^{-j}(z)$ is defined and $||f^{-j}(z) - f^{-j}(z_0)|| \le \varepsilon$ for $0 \le j \le n$. The entropy $h(\nu)$ for f^{-1} can be obtained by the following Brin-Katok formula

$$h(\nu) := \sup_{\varepsilon > 0} \liminf_{n \to \infty} -\frac{1}{n} \log \nu \left(\mathcal{D}_{-n}(z,\varepsilon) \right)$$

for ν -almost every z. So, for every $\alpha > 0$, there are positive constants A, ε and a Borel set \mathcal{M}_0 with $\nu(\mathcal{M}_0) > 3/4$ such that $\nu(\mathcal{D}_{-n}(z, 6\varepsilon)) \leq Ae^{-n(\log d - \alpha)}$ for $z \in \mathcal{M}_0$ and $n \geq 0$.

Proof of Main Theorem. Assume, for the sake of contradiction, that the measure ν possesses at least k-p+1 Lyapounov exponents that are strictly less than $\frac{1}{2k}\left(h_{\nu}(f)-\log d_{p-1}^+\right)$. Let $s\leq p-1$ be an integer, and let λ be a positive constant where $\lambda<\frac{1}{2k}\left(h_{\nu}(f)-\log d_{p-1}^+\right)$. Assume that ν has exactly k-s Lyapounov exponents strictly less than λ , with the remaining exponents being greater than or equal to $\frac{1}{2k}\left(h_{\nu}(f)-\log d_{p-1}^+\right)$. We will construct a complex subspace $\mathscr F$ of dimension s, which will contradict the estimate given in Proposition 4 by having too many (n,ε) -separated points. Fix a positive constant α such that $\alpha\ll\lambda$ and $\alpha\ll\frac{1}{2k}\left(h_{\nu}(f)-\log d_{p-1}^+\right)-\lambda$.

Note that all constructed graphs are localized within a compact neighborhood \mathscr{U} surrounding the filled Julia set \mathscr{U} . Returning now to the standard metric on \mathbb{C}^k , let \mathscr{N} be a subset of $\mathscr{M} \cap \mathscr{M}_0$ such that the balls $\mathcal{D}_{-n}(z,3\varepsilon)$, centered at points $z \in \mathscr{N}$, are mutually disjoint. We take \mathscr{N} to be maximal under this disjointness constraint. As a result, the balls $\mathcal{D}_{-n}(z,6\varepsilon)$ with centers $z \in \mathscr{N}$ provide a covering of $\mathscr{M} \cap \mathscr{M}_0$. Given that $\nu(\mathscr{M} \cap \mathscr{M}_0) \geq \frac{1}{4}$ and $\nu(\mathcal{D}_{-n}(z,6\varepsilon)) \leq Ae^{-n(h_{\nu}(f)-\alpha)}$, it follows that \mathscr{N} must contain at least $(4A)^{-1}e^{n(h_{\nu}(f)-\alpha)}$ points. Now consider the graphs $\Gamma_{z_{-n}}$ and $\Gamma'_{z_{-n}}$, previously constructed for each $z \in \mathscr{N}$. Since the balls $\mathcal{D}_{-n}(z,3\varepsilon)$ are disjoint, the set $\{z_{-n}\}$ is $(n,3\varepsilon)$ -separated. By Lemma 6, we have that the diameter of each $\Gamma_{z_{-n}}$ is less than ε for $\lambda_1 = \lambda$. Consequently, replacing each z_{-n} with a point $z'_{-n} \in \Gamma_{z_{-n}}$ yields a set that remains (n,ε) -separated.

Let Π be an orthogonal projection of $\mathbb{C}^k = \mathbb{C}^p \times \mathbb{C}^{k-p}$ onto a subspace \mathscr{E} of dimension k-s. If \mathscr{E} is a product of a subspace of \mathbb{C}^p with \mathbb{C}^{k-p} , then the fibers of Π that are sufficiently close to \mathscr{K} (in particular, those intersecting \mathscr{U}) are horizontal in D. This property holds for the projection onto any sufficiently small perturbation of \mathscr{E} . Therefore, we can select a finite number of projections Π_1, \ldots, Π_N onto $\mathscr{E}_1, \ldots, \mathscr{E}_N$ that satisfy this property, and a constant $\alpha_0 > 0$ such that any subspace \mathscr{F} of dimension s in \mathbb{C}^k makes an angle $\geq \alpha_0$ with at least one of \mathscr{E}_i . From Corollary 7, for each graph $\Gamma'_{z_{-n}}$, we find following estimate:

$$\operatorname{vol}(\Pi_i\left(\Gamma'_{z_{-n}}\right)) \ge \gamma'' e^{-2n(k-s)\lambda_3}$$

for some projection Π_i with a fixed constant $\gamma'' > 0$. Select an i such that this property holds for at least $N^{-1} \# \mathcal{N}$ graphs $\Gamma'_{z_{-n}}$. Since $\# \mathcal{N} \geq (4A)^{-1} e^{n(h_{\nu}(f) - \alpha)}$, we have

$$\sum_{i=1}^{N} \operatorname{vol}(\Pi_{i} \left(\Gamma'_{z_{-n}} \right)) \gtrsim e^{n(h_{\nu}(f) - \alpha) - 2n(k - s)\lambda_{3}}$$

Consequently, there exists a fiber \mathscr{F} of Π_i that intersects $\gtrsim e^{n(h_{\nu}(f)-\alpha)-2n(k-s)\lambda_3}$ graphs $\Gamma_{z_{-n}}$. This implies that \mathscr{F} contains an (n,ε) -separated subset of $\gtrsim e^{n(h_{\nu}(f)-\alpha)-2n(k-s)\lambda_3} \ge e^{n\left(\log d_{p-1}^++\alpha\right)}$ points since $\alpha \ll \frac{1}{2k}\left(h_{\nu}(f)-\log d_{p-1}^+\right)-\lambda$. This contradicts Proposition 4 for $X=\mathscr{F}$ as $d_{p-1}^+\ge d_s^+$, thus concluding the proof of Theorem.

Remark. The bound $\frac{1}{2k} \left(h_{\nu}(f) - \log d_{p-1}^{+} \right)$ can be replaced by the

$$\inf_{s \le p-1} \{ \frac{1}{2(k-s)} \left(h_{\nu}(f) - \log d_s^+ \right) \}.$$

REFERENCES

- 1. Tien-Cuong Dinh, Viet-Anh Nguyen and Nessim Sibony. Dynamics of horizontal-like maps in higher dimension. Advances in Mathematics, V.219, N.5, 2008, P.1689-1721.
- 2. Tien-Cuong Dinh and Nessim Sibony. Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings. Springer, Berlin, 2010, P.165-294.
- 3. Fabrizio Bianchi, Tien-Cuong Dinh and Karim Rakhimov. Monotonicity of dynamical degrees for Hénon-like and polynomial-like maps. Transactions of the American Mathematical Society, V.93, 2024, P.1-23.
- 4. Mikhael Gromov. On the entropy of holomorphic maps. Enseignement math, Manuscript, 2003, p.217-235.

REZYUME

Ushu maqolada Hénon akslantirishlari uchun berilgan invariant ergodik oʻlchovlarning Lyapunov eksponentalari entropiyaga qoʻyilagn ma'lum shart asosida oʻrganildi. Boshqacha aytganda, $d_{p-1}^+ < d$ shartni qanoatlantiruvchi f Hénon akslantirishi berilgan boʻlsin. Agar ν ergodik oʻlchov entropiyasi uchun $h_{\nu}(f) > \log d_{p-1}^+$ oʻrinli boʻlsa, ν oʻlchovga bogʻliq kamida p ta musbat Lyapunov eksponentalari topilib, quyidan $(h_{\nu}(f) - \log d_{p-1}^+)/2k$ bilan chegaralangan ekanligi koʻrsatilgan.

Kalit soʻzlar: Entropiya, Gorizontalsimon akslantirishlar, Lyapunov eksponentalari.

РЕЗЮМЕ

В данной статье исследуются показатели Ляпунова эргодических инвариантных мер для отображений Энона при выполнении определённого условия на энтропию. Иными словами, пусть f – отображение Энона, удовлетворяющее условию $d_{p-1}^+ < d$. Тогда для всякой эргодической меры ν , энтропия которой удовлетворяет неравенству $h_{\nu}(f) > \log d_{p-1}^+$, показано, что у меры ν имеется как минимум p положительных показателей Ляпунова. Более того, эти показатели снизу ограничены выражением $(h_{\nu}(f) - \log d_{p-1}^+)/2k$.

Ключевые слова: Энтропия, отображения горизонтального типа, показатели Ляпунова.