ELECTRICAL CONDUCTIVITY OF COMPOSITE POLYMER MATERIALS BASED ON POLYETHYLENE CONTAINING COPPER NANOPARTICLES
Two types of composite materials containing micro- and nanoparticles of copper in a polyethylene matrix were developed and studied. Transmission electron microscopy revealed that the size of the formed nanoparticles is 13 nm, while X-ray phase analysis indicated that the copper nanoparticles have a "core-shell" structure. The conductivity of polyethylene containing nano- and microparticles of copper was measured near the percolation threshold. It was found that below this threshold, discrepancies between experimental data and predictions of modern heterogeneous system theory were observed. Additionally, in polyethylene-based composites with copper nanoparticles, an extra contribution to electrical conductivity was detected in the sub-threshold region. The causes of this effect were analyzed considering the spatial structure of the material within the framework of the model proposed by Balberg and his co-authors for composite systems
1. U.Abdurakhmanov, Sh. Sharipov, Y. Rakhimova, M. Karabaeva, M. Baydjanov. Conductivity and Permittivity of NickelNanoparticle-Containing Ceramic Materials in the Vicinity of Percolation Threshold.// J. Am. Ceram. Soc.2006.V.89.№ 9. pp. 2946–48.
2. U. Abdurakhmanov, F. T. Boimuratov, G. I. Mukhamedov, A. S. Fionov, and G. Yu. Yurkov. The Permittivity of Phenylone_Based Composites with Nickel Particles.//. J. of Comm. Tech. and Elect., 2011, Vol. 56, No. 2, pp. 142–144.
3. Karpov I., Ushakov A., Demin V., Goncharova E., Shaichadinov A. Investigation of the quenching rate effect of the ferromagnetic properties of the CuO nanoparticles materials. Minerals, Metals Mater. Soc. 2020. V. 72. N 11. P. 3952 – 57. 4. Zatsepin A., Kiriakov A., Zatsepin D., Shchapova Yu., Gavrilov N. Structural and electron-optical properties of transparent nanocrystalline MgAl2O4 spinel implanted with copper ions. J. Alloys Comp. 2020. 834. P. 154993.
5. Фадеева Н.П., Сайкова С.В., Пикурова Е.В., Воронин А.С., Фадеев Ю.В., Самойло А.С., Тамбасов И.А. Новый метод получения прозрачных проводящих пленок оксида индия (III) и оксида индия-олова. Журн. Сибир. фед. ун-та. Сер.: Химия. 2021. Т. 14. № 1. С. 45-58. DOI: 10.17516/1998-2836-0215.
6. M. Karabayeva, B.M. Matyakubov, D. Saidkulov, Y. Raximova, Sh. Kamilov and U. Abduraxmanov. Transport оf Charge Carriers in Organic Disordered Semicоnductors Based оn Polyacrylоnitrile. Phys. Chem. Res., Vol. 13, No. 1, 31-36, March 2025. 7. Шкловский Б.И., Эфрос А.Л. Теория протекания и проводимость сильно неоднородных сред // Успехи физ. наук. – Москва, 1975. –Т. 117, №3. – с. 401-35.
8. В.А.Венедиктов, И.П. Звягин. Влияние ориентационного беспорядка на прыжковую проводимость органических неупорядоченных полупроводников. ВМУ. Серия 3. Астрономия. 2011 № 6. С. 89-92.
9. I.Balberg, D.Azulay, D.Toker, and O.Millo, ‘‘Percolation and Tunneling in Composite Materials,’’ Int. J. Mod. Phys. B, 18, 2091–121 (2004). 10. Balberg, I., The physical fundamentals оf the electrical cоnductivity in nanotube-based composites. J. Appl. Phys. 2020, 128, 204304
11. I.Balberg. Simple holistic solution to Archie's-law puzzle in porous media. PHYSICAL REVIEW E 103(6). June 2021
12. Таратанов Н.А., Сырбу С.А. Получение и свойства композитных наноматериалов с использованием двухслойных частиц меди. Изв. вузов. Химия и хим. технология. 2021. Т. 64. Вып. 12. С. 76-83
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





