On the Cauchy problems for Barenblatt-Zheltov-Kochina type fractional equations
In this article, the Cauchy problem for a homogeneous fractional-order equation of the
Barenblatt–Zheltov–Kochina type with the Caputo derivative is studied. The existence of a solution
to the given Cauchy problem is demonstrated using the Fourier method, and the continuity of
the obtained solution is proved by employing the properties of functional series. Furthermore, the
uniqueness of the solution is established. The properties of the Mittag-Leffler function are extensively
used in the process of proving the existence and uniqueness of the solution to the proposed problem.
1. G. I. Barenblatt, Yu. P. Zheltov, and I. N. Kochina, “On finitness conditions in the mechanics of continuous
media. Static problems of the theory of elasticity”, Prikl. Mat. Meh. 24, 316-322 (1960).
2. G. I. Barenblatt, Yu. P. Zheltov, and I. N. Kochina, “On finitness conditions in the mechanics of continuous
media. Static problems of the theory of elasticity”, Prikl. Mat. Meh. 24, 316-322 (1960).
3. G. I. Barenblatt and Yu. P. Zheltov, “Fundamental equations of filtration of homogeneous liquids in fissured
rocks”, Sov. Phys. Dokl. 132, 522-525 (1960).
4. P. Ya. Kochina et al., Development of Research on the Theory of Filtration in the USSR (1917-1967)
(Nauka, Moscow,1969) [in Russian].
5. G. I. Barenblatt, V. M. Yentov, and V. M. Ryzhik, Movement of Liquids and Gases in Natural Reservoirs
(Nedra, Moscow, 1984) [in Russian].
6. K. S. Basniev, I. N. Kochina, and V. M. Maksimov, Underground Hydromechanics (Nedra, Moscow,1993)
[in Russian].
7. P. Ya. Polubarinova-Kochina, The Theory of Groundwater Movement (Nauka, Moscow, 1977) [in Russian].
8. C. Lizama, “Abstract linear fractional evolution equations,” in Handbook of Fractional Calculus with
Applications, Ed. by J. A. T. Marchado (De Gruyter, Berlin, 2019), Vol. 2, pp. 465-497.
9. Kolmogorov A., Fomin S., Introduktory real analysis. Courier Corporation, (1975)
10. G. A. Sviridyuk and D. E. Shafranov, “The Cauchy problem for the Barenblatt-Zheltov-Kochina equation
on a smooth manifold,” Vestn. ChelGU 9, 171-177 (2003).
11. Kh. G. Umarov, “Explicit solution of the mixed problem in an anisotropic half-space for the Barenblatt-
Zheltov-Kochina equation,” Vladikavk. Mat. Zh. 15 (1), 51-64 (2013).
12. M. A. Sagadeeva and F. L. Hasan, “Bounded solutions of Barenblatt-Zheltov-Kochina model in Quasi-
Sobolev spaces,” Bull. South Ural Univ., Ser. Math. Model., Program. Comput. Software 8 (4), 138-144,
(2015).
13. Yu. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Vol. 17 of Translations of
Mathematical Monographs (Am. Math. Soc., Providence, RI, 1968).
14. R. R. Ashurov, Yu. E. Fayziyev, and N. Kh. Khushvaktov, “Some problems for the Barenblatt-Zheltov-
Kochina type fractional equations,” Bull. Inst. Math. 5, 97-104 (2022).
15. R. R. Ashurov, Yu. E. Fayziev, N. Kh. Khushvaktov, “Forward and inverse problems for the Barenblatt-
Zheltov-Kochina type fractional equations,” Lobachevskii J. Math. 44, 2563-2572 (2023).
16. R. R. Ashurov, Yu. E. Fayziev, N. Kh. Khushvaktov, “Non-Local Problem in Time for the Barenblatt-
Zheltov-Kochina Type Fractional Equations,” Lobachevskii Journal of Mathematics, 44, 5164-5178 (2023).
17. Yu. E. Fayziyev, Sh. T. Pirmatovc, Kh. T. Dekhkonov, “Forward and Inverse Problems for the Benney-Luke
Type Fractional Equations,” Russian Mathematics, 68, 70-78 (2024)
18. R. Ashurov, Yu. Fayziev, “On the uniqueness of solutions of two inverse problems for the subdiffusion
equation,” arXiv:2205.03405 [math.AP] , (2022) PROBLEMS FOR THE SUBDIFFUSION EQUATION
19. M. Ruzhansky, N. Tokmagambetov, and B. T. Torebek, “Inverse source problems for positive operators.
I: Hypoelliptic diffusion and subdiffusion equations,” J. Inverse Ill-Posed Probl. 27, 891-911 (2019).
20. R. Ashurov and Yu. Fayziev, “On the nonlocal problems in time for subdiffusion equations with the
Riemann-Liouville derivatives,” Bull. Karag. Univ., Math. Ser. 2, 106 (2022).
21. R. Ashurov and M. Shakarova, “Time-dependent source identification problem for fractional Schrodinger
type equations,” Lobachevskii J. Math. 43, 1053-1064 (2022).
22. R. Ashurov and Yu. Fayziev, “Uniqueness and existence for inverse problem of determining an order
of time-fractional derivative of subdiffusion equation,” Lobachevskii J. Math. 42, 508-516 (2021).
https://doi.org/10.1134/S1995080221030069
23. R.Ashurov and Yu.Fayziev, “Inverse problem for determining the order of the fractional derivative in the
wave equation,” Math. Notes 110, 824-836 (2021).
24. Y. Zhang and X. Xu, “Inverse source problem for a fractional differential equations,” Inverse Prob. 27 (3),
31-42 (2011).
25. R. Ashurov and O. Muhiddinova, “Initial-boundary value problem for a time-fractional subdiffusion
equation with an arbitrary elliptic differential operator,” Lobachevskii J. Math. 42, 517-525 (2021).
26. R. Ashurov and Yu. Fayziev, “On construction of solutions of linear fractional differentional equations
with constant coefficients and the fractional derivatives,” Bull. Inst. Math., №3, 3-21 (2017).
27. R. Ashurov and Yu. Fayziev, “On the nonlocal boundary value problems for time-fractional equations,”
Fract. Fraction. 41 (6), (2022).
28. A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier,
Amsterdam (2006).
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





