Aniq fanlar

ОБ ОДНОЗНАЧНОЙ РАЗРЕШИМОСТИ МНОГОМЕРНОЙ НАЧАЛЬНО-ГРАНИЧНОЙ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ ВЫСОКОГО ПОРЯДКА С ДРОБНОЙ ПРОИЗВОДНОЙ В СМЫСЛЕ МИЛЛЕРА - РОССА В КЛАССАХ СОБОЛЕВА

high-order partial differential equation, initial-boundary value problem, fractional time derivative, eigenvalues, eigenfunctions, completeness, spectral method, existence, uniqueness, series.

Authors

  • Ш. Г. Касимов Национальный университет Узбекистана имени Мирзо Улугбека, Ташкент, Uzbekistan
  • А. П. Кощанов Национальный университет Узбекистана имени Мирзо Улугбека,Ташкент, Uzbekistan

The paper proves the theorem of the existence and uniqueness of the solution of the problem in
Sobolev classes. The solution of the problem under consideration is constructed as the sum of a
series according to the system of eigenfunctions of a multidimensional spectral problem, for which
its eigenvalues are found as the roots of the transcendental equation and the corresponding system
of eigenfunctions is constructed. It is shown that this system of eigenfunctions is complete and forms
a Riesz basis in Sobolev spaces. Based on the completeness of the system of eigenfunctions, solutions
to the initial boundary value problem are obtained.