PRELIMINARY PHOTOMETRIC ANALYSIS RESULTS OF THE VARIABLE STAR TIC 166672575
This article presents the results of the photometric analysis of the TIC 166672575 obliterating variable star system from the Maidanak Observatory and TESS observations. Based on the MAO and TESS observation data, it was determined that the orbital period of this system is 0.1929278962 days. When the observation data were analyzed separately, the difference between the rotation periods was 3 seconds. This result showed a high agreement between our and the space telescope observation results. The asymmetry in the brightness curves of the TIC 166672575 star system indicates the presence of signs of the O’Connell effect
1. https://vizier.cds.unistra.fr/viz-bin/VizieR-4
2. https://iraf-community.github.io/
3. https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
4. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lombscargle.html
5. R. W. Hilditch, An introduction to close binary stars. Cambridge University Press, 2001.
6. J. Kallrath and E. F. Milone, ‘Introduction’, in Eclipsing Binary Stars: Modeling and Analysis, in Astronomy and Astrophysics Library. , New York, NY: Springer New York, 2009, pp. 3–36. doi: 10.1007/978-1-4419-0699-1_1.
7. M. Beaky, ‘Eclipsing Binary Stars as Astrophysical Laboratories’, Juniata Voices, vol. 14, p. 171, 2014.
8. G. R. Ricker et al., ‘Transiting exoplanet survey satellite’, J. Astron. Telesc. Instrum. Syst., vol. 1, no. 1, pp. 014003–014003, 2015.
9. A. Fresneau, ‘Survey of the astrographic catalogue from 1 to 31 degrees of northern declination’, Astron. J. ISSN 0004-6256 Vol 88 Sept 1983 P 1378-1381, vol. 88, pp. 1378–1381, 1983.
10. J. Hubscher, ‘BAV-Results of observations - Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsating Stars’, Inf. Bull. Var. Stars, vol. 6152, p. 1, Oct. 2015.
11. N. N. Samus’, E. V. Kazarovets, O. V. Durlevich, N. N. Kireeva, and E. N. Pastukhova, ‘General catalogue of variable stars: Version GCVS 5.1’, Astron. Rep., vol. 61, no. 1, pp. 80–88, 2017.
12. C. Akerlof et al., ‘ROTSE All-Sky Surveys for Variable Stars. I. TestFields’, Astron. J., vol. 119, no. 4, p. 1901, 2000.
13. A. A. Henden, M. Templeton, D. Terrell, T. C. Smith, S. Levine, and D. Welch, ‘VizieR online data catalog: AAVSO photometric all sky survey (APASS) DR9 (Henden+, 2016)’, VizieR Online Data Cat., vol. 2336, p. II/336, 2016.
14. S. Ehgamberdiev, ‘Modern astronomy at the Maidanak observatory in Uzbekistan’, Nat. Astron., vol. 2, no. 5, pp. 349–351, 2018.
15. A. R. Hafizov, O. A. Burxonov, and J. A. Boltamurodov, ‘TYC 3125-278-1 OʻZGARUVCHAN YULDUZI TADQIQOTINING DASTLABKI NATIJALARI’, «Ёш Олимлар Ахборотномаси»–«Вестник Молодых Ученых», vol. 3, no. 3, pp. 44–47, 2024.
16. J. D. Scargle, ‘Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data.’, Astrophys. J., vol. 263, pp. 835–853, Dec. 1982, doi: 10.1086/160554.
17. K. D. Andrych, D. E. Tvardovskyi, L. L. Chinarova, and I. L. Andronov, ‘MAVKA: Investigation of stellar brightness extrema approximation stability for various methods’, Contrib Astron Obs Skaln. Pleso, vol. 50, pp. 557–559, 2020.
18. K. D. Andrych and I. L. Andronov, ‘MAVKA: Software for statistically optimal determination of extrema’, ArXiv Prepr. ArXiv181206949, 2018.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





