ANTRATSENNI NITRAT KISLOTA YORDAMIDA ANTRAXINONGACHA OKSIDLASH
This study examines the oxidation of anthracene with various oxidizing agents to produce 9,10-anthraquinone. The relevance of the study lies in the importance of anthraquinone as an important intermediate in the dyeing industry. As a methodological approach, reactions involving various oxidizing agents were conducted and their effectiveness analyzed. The results demonstrate the possibility of producing anthraquinone in high yields by oxidation with 56% nitric acid in the presence of oxygen. Based on the results of the study, it was established that the hydrogen at the central 9,10-position of anthracene is active.
1. Шадиева, Г.; Нурмонов, С.; Кадиров, О. Выделение антрацена из вторичного продукта и его использование в синтезе ионообменных материалов. В кн.: Kimyo fanining muammolari, sanoat sohalariga tatbiqi va yashil texnologiyalar mavzusidagi xalqaro anjuman materiallari, Toshkent, O‘zbekiston, 18–19 aprel 2025 yil; ISNB 978-9910-695-76-6; сс. 1227–1229.
2. Шадиева Г.К. Антраценни турли оксидловчилар ёрдамида 9,10-антрахинонгача оксидлаш усуллари. “Келажакка кимё билан интиламиз” мавзусидаги илмий-амалий анжуман материаллари. Тошкент, Ўзбекистон, 22-23 май 2025 йил; бб.72-74
3. Brown GS, Barton LL, Thomson BM. Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons. Waste Manag. 2003;23(8):737-40.
4. Bonfranceschi, A.; Briand, L. E.; Thomas, H. J. Selective Oxidation of Anthracene to 9,10-Anthraquinone over Silica Supported Vanadium Catalyst. React. Kinet. Catal. Lett. 2002, 77 (1), 59–64.
5. Sharma, N.; Jung, J.; Lee, Y.-M.; Seo, M. S.; Nam, W.; Fukuzumi, S. Multi-Electron Oxidation of Anthracene Derivatives by Nonheme Manganese (IV)-Oxo Complexes. Angew. Chem. Int. Ed. 2010, 49 (28), 5164–5167.
6. Krumova, K.; Cosa, G. Chapter 1: Overview of reactive oxygen species. In Singlet Oxygen: Applications in Biosciences and Nanosciences, 1st ed.; RSC: London, UK, 2016; pp. 1–21.
7. Kumar, R.; Singh, S.; Singh, A. “Electrochemical Behavior of Anthraquinone Derivatives in Energy Storage Applications.” ACS Appl. Energy Mater. 2019, 2 (7), 4727–4736.
8. Sharma, V.; Kumar, A.; Rana, S. “Anthraquinone Functionalized Materials for Dye-Sensitized Solar Cells.” J. Phys. Chem. C 2018, 122 (14), 7798–7808.
9. Routoula, E.; Patwardhan, S. V. Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. ACS Sustainable Chem. Eng. 2020, 8 (12), 4813–4830.
10. Díaz-Uribe C., Méndez-Romero D., Reyes-Santiago J., et al. Physical-Chemical Study of Anthracene Selective Oxidation by Hydroxyl Radicals // International Journal of Molecular Sciences. – 2020. – Vol.21, №2. – P.345-356.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





