GIDROTERMAL USULDA SINTEZ QILINGAN BIVO₄ NAMUNALARINING SPEKTROSKOPIK TAHLILI
This study investigates the crystal phase and structural properties of BiVO₄ (bismuth vanadate) samples synthesized via hydrothermal method at different temperatures. Fourier-transform infrared (FTIR) and Raman spectroscopy were employed to analyze vibrational modes and phase composition. The FTIR spectra (400–4000 cm⁻¹) revealed characteristic vibrational peaks associated with VO₄³⁻ groups. Raman analysis confirmed the formation of the monoclinic phase of BiVO₄. Increasing the synthesis temperature led to enhanced crystallinity and more intense spectral features. The results highlight the importance of phase control in BiVO₄ to optimize its photocatalytic performance.
1. A. Kudo, K. Omori, H. Kato. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO₄ powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc., 121 (1999) 11459–11467. DOI:10.1021/ja992541y
2. J.K. Cooper, S. Gul, J. Yano, J.Z. Zhang, I.D. Sharp. Electronic structure of monoclinic BiVO₄: Photoelectrochemical and spectroscopic study, Chem. Mater., 26 (2014) 5365–5373. DOI: https://doi.org/10.1021/cm5025074 3. Zilong Wang, Wenrui Zhang, Yang Song, Ningtao Liu, Li Chen, Na An, Deyu Liu, Qitao Liu, Shengcheng Shen, Yongbo Kuang, Jichun Ye. Unraveling the Site-Selective Doping Mechanism in Single-Crystalline BiVO4 Thin Films for Photoelectrochemical Water Splitting. The Journal of Physical Chemistry C 2023, 127 (12) , 5775-5782. https://doi.org/10.1021/acs.jpcc.3c00146
4. W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai. Efficient degradation of toxic organic pollutants with BiVO₄ under visible light irradiation, Environ. Sci. Technol., 38 (2004) 3273–3277. DOI: https://doi.org/10.1021/es0350296
5. W. Yao, J. Zhang. Synthesis of BiVO₄ with a sheelite monoclinic structure and its photoelectrochemical properties, Appl. Catal. B, 69 (2007) 72–78. DOI: https://doi.org/10.1016/j.apcatb.2006.06.017
6. W. Luo, J. Wang, X. Zhao, et al. Synthesis and characterization of monoclinic BiVO₄ for solar water splitting, J. Mater. Chem., 21 (2011) 3746–3751. DOI: https://doi.org/10.1039/C0JM03084D
7. B. Ohtani, Y. Ogawa, S. Nishimoto. Photocatalytic activity of BiVO₄ particles prepared by solid-state reaction method, Chem. Lett., 26 (1997) 723–724. DOI: https://doi.org/10.1246/cl.1997.723
8. Q. Wang, T. Hisatomi, K. Maeda, et al. Core/shell structured BiVO₄/WO₃ photoanode for efficient visible-light-driven water oxidation, J. Am. Chem. Soc., 136 (2014) 10886–10889. DOI: https://doi.org/10.1021/ja503214e
9. M. Zhou, J. Yu, B. Cheng. Effects of calcination temperature on the photocatalytic activity and morphology of BiVO₄, Mater. Lett., 60 (2006) 396–400. DOI: https://doi.org/10.1016/j.matlet.2005.09.081
10. Z. Zhang, W. Wang, L. Wang, S. Sun. Enhancement of visible-light photocatalysis by coupling BiVO₄ with other semiconductors, Catal. Sci. Technol., 1 (2011) 161–169. DOI: https://doi.org/10.1039/C0CY00066H
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





