SURFACE MORPHOLOGY AND STRUCTURAL FEATURES OF NICKEL SILICIDE THIN FILMS FABRICATED BY ION-PLASMA DEPOSITION
It has been determined that excessive heating at 800 K may induce agglomeration effects; therefore, the optimal annealing temperature was set at 750 K. Furthermore, the initially amorphous or fine-grained crystalline structure evolved into larger crystalline domains, suggesting the onset of NiSi2 phase formation. Energy-dispersive X-ray spectroscopy (EDX) revealed an almost complete absence of oxygen, carbon, and other impurity peaks, thereby confirming the high purity of the sample. The results indicate that silicide phases, most likely NiSi2, were formed at the Ni/Si interface as a consequence of ion-plasma deposition followed by thermal diffusion
1. Lee, S., Mangelinck, D., Pey, K. L., Ding, J., Chi, D. Z., Osipowicz, T., Dai, J. Y., & See, A. (2002). Enhanced stability of Ni monosilicide on MOSFETs poly-Si gate stack. Microelectronic Engineering, 60, 171–181. https://doi.org/10.1016/S0167-9317(02)00407-1
2. Lavoie, C., d’Heurle, F. M., Detavernier, C., & Cabral, C. (2003). Towards implementation of a nickel silicide process for CMOS technologies. Microelectronic Engineering, 70, 144–157. https://doi.org/10.1016/S0167-9317(03)00320-1
3. Nurbobo Ugli, E. S. & Karshievich, T. A. (2025). Study of the process
4. of formation of heterostructural nanofilms MexSiy/Si and GaxMe1-xAs/GaAs by ion implantation. J. Phys. Sci., 36(1), 17–25. https://doi.org/10.21315/jps2025.36.1.2
5. Liu, C. M., Liu, W. L., Hsieh, S. H., Tsai, T. K., & Chen, W. J. (2005). Interfacial reactions of electroless nickel thin films on silicon. Applied Surface Science, 243, 259–264. https://doi.org/10.1016/j.apsusc.2004.09.002
6. Zhao, F. F., Zheng, J. Z., Shen, Z. X., Osipowicz, T., Gao, W. Z., & Chan, L. H. (2004). Thermal stability study of NiSi and NiSi2 thin films. Microelectronic Engineering, 71, 104–111. https://doi.org/10.1016/j.mee.2003.09.018
7. Pilipenko, V. A., Solovjov, J. A., & Gaiduk, P. I. (2021). Nickel silicide formation with rapid thermal treatment in the heat balance mode. Doklady of the National Academy of Sciences of Belarus, 65(1), 111–118. https://doi.org/10.29235/1561-8323-2021-65-1-111-118
8. Peter, A. P., Meersschaut, J., Richard, O., Moussa, A., Steenbergen, J., Schaekers, M., & Adelmann, C. (2015). Phase formation and morphology of nickel silicide thin films synthesized by catalyzed chemical vapor reaction of nickel with silane. Chemistry of Materials, 27, 245–254. https://doi.org/10.1021/cm504198g
9. Dovranov, K.T., Vinnichenko, M., Korablev, V., Normuradov, M., Eshboboyev, S., Egamberdiyeva. O. Raman and IR Spectrum Analysis of CrSi2 Thin Films Formed in Direct Current and Variable Frequency Modes of a Magnetron Sputtering Device. International Conference on Electrical Engineering and Photonics, EExPolytech, 2024, pp. 304– 307. DOI:10.1109/EExPolytech62224.2024.10755629
10. Nakahigashi, K., & Shimomura, Y. (1975). Electron microscope observations on nickel-oxide whiskers. Journal of Crystal Growth, 28(3), 367–371. https://doi.org/10.1016/0022-0248(75)90131-3
11. Wagner, R. S., & Ellis, W. C. (1964). Vapor–liquid–solid mechanism of single crystal growth. Applied Physics Letters, 4(5), 89–90. https://doi.org/10.1063/1.1753975
12. Detavernier, C., Lavoie, C., & d’Heurle, F. (2003). Journal of Applied Physics, 93, 2510. https://doi.org/10.1063/1.1540749
13. Bhaskaran, M., Sriram, S., Holland, A. S., & Evans, P. J. (2008). Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques. Micron, 40(1), 99–103. https://doi.org/10.1016/j.micron.2008.07.001
14. Kamins, T. I., Williams, R. S., Chen, Y., Chang, Y., & Chang, Y. A. (2000). Chemical vapor deposition of Si nanowires nucleated by TiSi₂ islands on Si. Applied Physics Letters, 76(5), 562–564. https://doi.org/10.1063/1.125763
15. Tiwari, S., Rana, R., Chan, K., Shi, L., & Hanafi, H. (1996). Single charge and confinement effects in nanocrystal memories. Applied Physics Letters, 69(9), 1232–1234. https://doi.org/10.1063/1.117380 16. Hayes, W., & Loudon, R. (1978). Scattering of Light by Crystals. New York: Wiley. 17. Kamins, T. I., Williams, R. S., Basile, D. P., Hesjedal, T., & Harris, J. S. (2001). Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms. Journal of Applied Physics, 89(2), 1008–1016. https://doi.org/10.1063/1.1334614 18. Iwai, H., Ohguro, T., & Ohmi, S.-I. (2002). NiSi salicide technology for scaled CMOS. Microelectronic Engineering, 60, 157–169. https://doi.org/10.1016/S0167-9317(02)00394-5 19. Kang, T. J., Lee, H.-Y., & Kim, Y. H. (2007). Reduction of sheet resistance and low-thermal budget relaxation of stress gradients in polysilicon microcantilever beams using nickel-silicides. Journal of Microelectromechanical Systems, 16(2), 279–288. https://doi.org/10.1109/JMEMS.2007.892232 20. Lee, P. S., Mangelinck, D., Pey, K. L., Shen, Z. X., Ding, J., Osipowicz, T., & See, A. (2000). Micro-Raman spectroscopy investigation of nickel silicides and nickel (platinum) silicides. Electrochemical and Solid-State Letters, 3(3), 153–155. https://doi.org/10.1149/1.1390951 21. Qin, M., Poon, M. C., & Yuen, C. Y. (2000). A study of nickel silicide film as a mechanical material. Sensors and Actuators A: Physical, 87, 90–95. https://doi.org/10.1016/S0924-4247(00)00472-1
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





