ROLE OF K -CHANNELS IN THE RELAXANT EFFECT OF THE VINCANIDINE ETHYL IODIDE INDOLE ALKALOID
Downloads
Natural indole alkaloids act as vascular agents and exhibit vasodilatory effects. In this study, the concentration-dependent relaxant effect of vincanidine ethyl iodide – an indole alkaloid - was investigated, focusing on its action through the endothelial layer and modulation of K⁺ channels. Vincanidine ethyl iodide exhibited a potent, dose - dependent relaxant effect on endothelium - intact aortic rings, and its relaxant activity remained unaffected after pre - incubation with BaCl₂ or 4 - aminopyridine (4 - AP). The relaxant effect of vincanidine ethyl iodide (12-hydroxynorfluorocurarine ethyl iodide) involves a crucial role for both Kir and KV channels, activated via the NO/sGC/cGMP/PKG signaling pathway.
1. Saz-Lara A., Bruno RM., Cavero-Redondo I., Álvarez-Bueno C., Notario-Pacheco B., Martínez-Vizcaíno V. Association
Between Arterial Stiffness and Blood Pressure Progression with Incident Hypertension: A Systematic Review and Meta-
Analysis. Cardiovasc. Med 2022; 9, 798934
2. Gupta P., Bast JA., Razavi AC., Canonico ME., Shahzad A., Naeem M., Bonaca MP., Sperling LS., Quintana RA.
Hypertension in atherosclerotic cardiovascular disease: insights into epidemiology, management strategies, and outcomes.
Curr Opin Cardiol. 2025; 40(4): 206-212.
3. Zeng X., Yang Y. Molecular Mechanisms Underlying Vascular Remodeling in Hypertension. Rev Cardiovasc Med. 2024;
25(2): 72.
4. Zaripov AA., Jumayev IZ., Usmanov PB., Mirzayeva YT., Esimbetov AT., Rustamov SY, Boboev SNU., Ibragimov EBU.,
Qurbonova SB., Zhurakulov S.N. Protective Effect of DHQ-11 against Hypoxia-induced Vasorelaxation. Trends in
Sciences 2024; 21(11), 81-92.
5. Taylor Jade L., Pritchard Harry AT., Walsh Katy R., Danby Thea GE., Grant H., Allan Stuart M., Nelson Mark T., Greenstein
Adam S. PS-B10-7: A vascular smooth muscle potassium channel dysfunction underlies small vessel disease of the brain in
both hypertension and alzheimer's disease. Journal of Hypertension 2023; 41(1): 447.
6. Jackson WF. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. Adv Pharmacol. 2017;
78: 89-144.
7. Daghbouche-Rubio N., López-López JR., Pérez-García MT., Cidad P. Vascular smooth muscle ion channels in essential
hypertension. Front Physiol. 2022; 13(10), 161-175.
8. Mironova GY., Haghbin N., Welsh DG. Functional tuning of Vascular L-type Ca2+ channels. Front Physiol. 2022; 13:1058744. 9. Pereira da Silva EA., Martín-Aragón Baudel M., Navedo MF., Nieves-Cintrón M. Ion channel molecular complexes in vascular smooth muscle. Front Physiol. 2022; 13:999369. 10. Dogan MF., Yildiz O., Arslan SO., Ulusoy KG. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol. 2019; 33(5): 504-523. 11. Ko EA., Han J., Jung ID., Park WS. Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res 2008; 44(2): 65-81. 12. Richter-Laskowska M., Trybek P., Delfino D.V. Wawrzkiewicz-Jałowiecka, A. Flavonoids as Modulators of Potassium Channels. Int. J. Mol. Sci. 2023; 24, 1311. 13. Nappi F., Fiore A., Masiglat J., Cavuoti T., Romandini M., Nappi P., Avtaar Singh S.S., Couetil J.P. Endothelium-Derived Relaxing Factors and Endothelial Function: A Systematic Review. Biomedicines 2022; 10, 2884. 14. Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol. 2001; 21(1): 28-38.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





