APIS MELLIFERA ASALARI XITOZANINI MIKROTO‘LQIN YORDAMIDA SINTEZ QILISH VA REOLOGIK XOSSALARINI O‘RGANISH
In this study, chitosan was synthesized from dead Apis Mellifera honeybees using a microwave-assisted deacetylation method. Compared to conventional thermal processing, this approach significantly reduces reaction time and energy consumption. The obtained chitosan was analyzed for its physicochemical properties, rheological behavior, molecular weight, and degree of deacetylation (DDA). The results indicate that chitosan derived from Apis Mellifera demonstrates high quality and promising potential for applications in biomedicine, pharmaceuticals, and biomaterials engineering.
1. Khattak, S., Wahid, F., Liu, L. P., Jia, S. R., Chu, L. Q., Xie, Y. Y., Li, Z. X., & Zhong, C. (2019). Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: Current state and perspectives. Applied Microbiology and Biotechnology, 103, 1989–2006. https://doi.org/10.1007/s00253-018-9586-4
2. Marzieh, M. N., Zahra, F., Tahereh, E., & Sara, K. N. (2019). Comparison of the physicochemical and structural characteristics of enzymatic produced chitin and commercial chitin. International Journal of Biological Macromolecules,139, 270–276. https://doi.org/10.1016/j.ijbiomac.2019.07.118
3. Ixtiyarova, G. A., & Mamatova, Sh. B. (2018). Poluchenie xitina i xitozana iz medonosnogo pchelinogo podmora Apis Mellifera. Universum: Texnicheskie nauki, 5(50). http://7universum.com/ru/tech/archive/item/5931
4. Nemcev, S. V., et al. (2004). Poluchenie xitina i xitozana iz medonosnykh pchel. Prikladnaya Biokhimiya i Mikrobiologiya, (1), 46–50.
5. Swierczewska, M., Han, H. S., Kim, K., Park, J. H., & Lee, S. (2016). Polysaccharide-based nanoparticles for theranostic nanomedicine. Advanced Drug Delivery Reviews, 99, 70–84. https://doi.org/10.1016/j.addr.2015.11.015
6. Elgadir, M. A., Uddin, S., Ferdosh, S., Adam, A., Jalal, A., Chowdhury, K., & Islam, Z. (2014). Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. Journal of Food and Drug Analysis, 3, 233–246. https://doi.org/10.1016/j.jfda.2014.10.008
7. Mohammed, M. A., Syeda, J. T. M., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 9(4), 53–66. https://doi.org/10.3390/pharmaceutics9040053
8. Rehman, K. U., Hollah, C., Wiesotzki, K., Heinz, V., Aganovic, K., Rehman, R. U., … & Zhang, J. (2023). Insect-derived chitin and chitosan: A still unexploited resource for the edible insect sector. Sustainability, 15, 4864. https://doi.org/10.3390/su15064864
9. Zhao, X., Zhang, J., & Zhu, K. Y. (2019). Chito-protein matrices in arthropod exoskeletons and peritrophic matrices. In E. Cohen & H. Merzendorfer (Eds.), Extracellular Sugar-Based Biopolymers Matrices (pp. 3–56). Springer. https://doi.org/10.1007/978-3-030-12918-7_1
10. Muthukrishnan, S., Merzendorfer, H., Arakane, Y., & Kramer, K. J. (2012). Chitin metabolism in insects. In Insect Molecular Biology and Biochemistry (pp. 193–235). Elsevier. https://doi.org/10.1016/B978-0-12-384747-8.00007-7
11. Milusheva, R., & Rashidova, S. Sh. (2020). Bombyx Mori chitosan nanoparticles: Synthesis and properties. Journal of Organic Polymer Materials, 9(4), 63–73.
12. Ixtiyarova, G. A., Hazratova, D. A., & Seytnazarova, O. M. (2020). Extraction of chitosan from died honey bee Apis Mellifera. Chemical Technology, Control and Management, 2, 15–20.
13. Akmalovna, I. G., Nosirovich, U. B., Maxamatdinovich, T. S., & Safarovich, M. A. (2020). Physicochemical properties of chitin and chitosan from died honey bees Apis Mellifera of Uzbekistan. Journal of Critical Reviews, 7(4), 120–124.
14. De Oliveira, A. M., Franco, T. T., & Oliveira Junior, E. N. D. (2014). Physicochemical characterization of thermally treated chitosans and chitosans obtained by alkaline deacetylation. International Journal of Polymer Science, 2014, 1–9. https://doi.org/10.1155/2014/480150
15. Berdikulov, B., & Ixtiyarova, G. A. (2025). Ultrasound-assisted extraction of chitosan from the exoskeletons of dead honey bees. Development of Science, 5, 118–127.
16. Leke-Aladekoba, A. A. (2018). Comparison of extraction methods and characterisation of chitin and chitosan with antimicrobial and antioxidant properties from black soldier fly (Hermetia illucens) meal. Dalhousie University, Halifax, NS, Canada.
17. Gzyra-Jagieła, K., Pęczek, B., Wiśniewska-Wrona, M., & Gutowska, N. (2019). Physicochemical properties of chitosan and its degradation products. In L. A. M. Broek & C. G. Boeriu (Eds.), Chitin and Chitosan (pp. 61–80). Wiley. https://doi.org/10.1002/9781119450436.ch4
18. Jiménez-Gómez, C. P., & Cecilia, J. A. (2020). Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules, 25, 3981. https://doi.org/10.3390/molecules25173981
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





