HA2-WEAKLY PERIODIC P-ADIC GENERALIZED GIBBS MEASURES FOR THE ISING MODEL WITH AN EXTERNAL FIELD ON THE CAYLEY TREE OF ORDER TWO
In this work, we study HA2-weakly periodic p-adic generalized Gibbs measures for the Ising model
with an external field on the Cayley tree of order two. In the case jAj = 2, we prove that at least
one unbounded measure of this kind exists for the model. Moreover, we demonstrate that for any
odd prime p, a phase transition occurs in the considered model.
1. H. O. Georgii: Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics, Vol. 9, De
Gruyter, Berlin (1988).
2. A. N. Kolmogorov: Foundations of the Probability Theory, Chelsey, New York (1956).
3. O. N. Khakimov, On a Generalized p-adic Gibbs Measure for Ising Model on Trees, p-Adic Numb. Ultr.
Anal. Appl. 6(3), 207-217, (2014).
4. A. Khrennikov: p-Adic stochastics and Dirac quantization with negative probabilities,
Inter. J. Theor. Phys., 34, 2423-2433 (1995).
5. A. Yu. Khrennikov: On the extension of the von Mises frequency approach and Kolmogorov axiomatic
approach to the p-adic probability theory, Theor. Prob. Appl., 40, 371-376 (1995).
6. A. Yu. Khrennikov, S. Yamada and A. van Rooij: Measure-theoretical approach to p-adic probability
theory, Annals Math. Blaise Pascal, 6, 21-32 (1999)
7. N. Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta-Functions (Springer, Berlin, 1977).
8. F. Mukhamedov, On dynamical systems and phase transitions for q + 1-state p-adic Potts model on the
Cayley tree, Math. Phys. Anal. Geom. 16 (2013) 49-87.
9. F. Mukhamedov: Renormalization method in p-adic -model on the Cayley tree, Inter. J. Theor. Phys.,
54, 3577-3595 (2015).
10. F. Mukhamedov, O. Khakimov: Translation-invariant generalized p-adic Gibbs measures for the Ising
model on Cayley trees, Math. Meth. Appl. Scie. 44, 12302-12316 (2021).
11. F. Mukhamedov and O. Khakimov: On Julia set and chaos in p-adic Ising model on the Cayley tree,
Math. Phys. Anal. Geom., 20, 14 (2017).
12. F. Mukhamedov and O. Khakimov: Phase transition and chaos: p-adic Potts model on a Cayley tree,
Chaos Solitons Fractals, 87, 190-196 (2016).
13. F. Mukhamedov and O. Khakimov: Chaotic behavior of the p-adic Potts–Bethe mapping, Discrete
Contin. Dyn. Syst., 38, 231-245 (2018).
14. F. Mukhamedov, O. Khakimov, On equation xk = a over Qp and its applications, Izves. Math. 84, 348–360
(2020).
15. F. Mukhamedov, O. Khakimov, Chaos in p-adic Statistical lattice models: Potts model, in book: W. A.
Zuniniga-Galindo, B. Toni (Eds), Adv. Non-Arch. Anal. Appl.- The p-adic Methodology in STEAM-H
Springer Nature, 2022, pp. 113-164.
16. F. Mukhamedov, M. Rahmatullaev, A. Tukhtabaev, R. Mamadjonov, On p-adic Ising model with external
field on a Cayley tree: Periodic Gibbs measures, Teor. Math. Phys., (2023), Vol.216, Num.2, pp. 383-400.
17. Rahmatullaev M.M., Abdukaxorova Z.T., On HA-weakly periodic p-adic generalized Gibbs measures for
the p-adic Ising model with an external field on the Cayley tree of order two, Rep. Math. Phys., 2025,
95(1), 93-106.
18. Rahmatullaev M.M., Abdukaxorova Z.T., HA-weakly periodic p-adic generalized Gibbs measures for the
p-adic Ising model with an external field on the Cayley tree of order two, p-adic numbers Ult.Anal., 2024,
16(3), 233-263.
19. U. A. Rozikov: Gibbs Measures on Cayley Trees, World Sci. Publ., Singapore, 2013.
20. W. H. Schikhof, Ultrametric Calculus (Cambridge Univ. Press, Cambridge, 1984).
21. V. S. Vladimirov, I. V. Volovich and E. V. Zelenov, p-Adic Analysis and Mathematical Physics (World
Sci. Publ., Singapore,1994)
22. I. V. Volovich: p-Adic string, Class. Quan. Grav., 4, L83-L87 (1987).
23. W. A. Zuniga-Galindo, S. M. Torba, Non-Archimedean Coulomb gases, J. Math. Phys. 61(2020), 013504.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





