Maximal solvable extensions of m-dimensional some n-Lie algebras
This paper is devoted to the construction of maximal solvable extensions of m-dimensional
n-Lie algebras. The study provides a systematic approach to identifying and classifying such
extensions within the framework of higher-order Lie structures. The results contribute to the deeper
understanding of the algebraic properties of n-Lie algebras and their solvable extensions, and may
serve as a basis for further applications in both mathematics and theoretical physics.
1. Bai R., Shen C., and Zhang Y., 3-Lie algebras with an ideal N, Linear Algebra Appl., 2009, vol. 431, No.
5-7, pp. 673-700.
2. Camacho L.M., Casas J.M., Gomez J.R., Ladra M., Omirov B.A. On Nilpotent Leibniz n-algebras, J.
Algebra Appl. 2012. vol. 11 No. 3 , 1250062 (17 pages)
3. V.T.Fillipov, n-Lie algebras, Sibirsk. Mat. Zh., 1985, Vol. 26, No 6, pp 126-140.
4. Kasymov, S.M., On a theory of n-Lie algebras. Algebra and Logic, 1987, Vol. 26, No 3, pp 155-166.
5. Nambu Y., Generalized Hamiltonian dynamics, Phys. Rev., 1973. vol. 7, No. 8, pp 2405-2412.
6. Takhtajan L., On foundation of the generalized Nambu mechanics, Commun. Math. Phys., 1994. vol. 160,
No. 2, pp 295-315.
7. Liu, J., Chen, Z., Wang, Y., Structure and classification of nilpotent 3-Lie algebras. Communications in
Algebra, 2015. Vol. 43, No 3, pp 1053-1068.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





