Exponentially weighted optimal quadrature formulas with complex exponential weights in the periodic Sobolev space ^ W (2,1,0) 2 (0,1]
This paper is devoted to the construction of optimal quadrature formulas for the approximate
evaluation of integrals of periodic functions in the Sobolev space
^
W
(2,1,0)
2
(0,1]. The quadrature
formulas involve a complex exponential weight function e 2πiωx .The coefficients of the formulas are
obtained by minimizing the norm of the corresponding error functional in the conjugate space. Using
Fourier analysis and extremal function methods, explicit expressions for the optimal coefficients are
derived. These results extend the classical theory of quadrature formulas to exponentially weighted
and oscillatory cases, yielding efficient schemes for the numerical integration of periodic functions.
1. J.Ahlberg, E.Nilson, J.Walsh, The theory of splines and its application, Academic press Inc., New York.
2. S.L.Sobolev, The coefficients of optimal quadrature formulas, in: Selected Works of S.L.Sobolev. Springer,
pp. 561-566 (2006).
3. S.L.Sobolev, “Введение в теорию кубатурных формул”, Москва, издательство “Наука”.
4. Kh.M.Shadimetov, A.R.Hayotov, Construction of interpolation splines minimizing semi-norm in space.
Numerical mathematics 53(2). 2012
5. Shadimetov Kh.M., Azamov S.S. ,Kobilov H.M. Optimization of approximate integration formulas for
periodic function classes Problems of computational and applied mathematics no. 3(67) 2025
6. Azamov S.S., Qobilov H.M. Optimal quadrature formulas in the space of periodic functions journal of
International scientific journal of computing technologies and mathematical modeling
7. Hayotov A.R., Khayriev U.N, Makhkamova D. 2021. Optimal quadrature formula for approximate
calculation of integrals with exponential weight and its application. Bulletin of the Institute of
Mathematics, №2. Vol. 4. P. 99-108.
8. Shadimetov M.Kh. 2019. Optimal lattice quadrature and cubature formulas in Sobolev spaces. Monograph,
Ministry of Higher and Secondary Specialized Education of the Republic of Uzbekistan, Tashkent P. 97-
104. ISBN 978-9943-5958-2-8.
9. Shadimetov M.Kh. 1998. Weighted optimal quadrature formulas in a periodic Sobolev space. Uzbek Math.
Zh., №2. P. 76-86.
10. Sard A. 1949. Best approximate integration formulas; best approximation formulas, Amer. J. Math., №71.
P. 80-91.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





