ON THE POINT SPECTRUM OF THE SCHRODINGER OPERATOR FOR A SYSTEM CONSISTING OF TWO IDENTICAL INFINITELY HEAVY BOSONS AND ONE LIGHT FERMION ON THE THREE-DIMENSIONAL LATTICE
We consider the Hamiltonian of a system of three quantum mechanical particles (two identical
bosons and a fermion) on the one-dimensional lattice interacting by means of zero-range attractive
or repulsive potentials. We investigate the point spectrum of the three-particle discrete Schrodinger
operator H(K); K 2 T which possesses infinitely many eigenvalues depending on repulsive or
attractive interactions, under the assumption that the bosons in the system have infinite mass.
[1] Winkler K. et al. “Repulsively bound atom pairs in an optical lattice. Nature. 2006. 441. 853–56.
[2] Bloch I. Ultracold quantum gases in optical lattices. Nat. Phys. 2005. 1. 23–30.
[3] Jaksch D.and Zoller P. The cold atom Hubbard toolbox. Ann. of Phys. 2005. 315(1). 52–79.
[4] Thalhammer G. et al. Inducing an optical Feshbach resonance via stimulated Raman coupling.
Phys.Rev. A. 2005. 71. 033403.
[5] Hofstetter W. et al., “High-temperature superfluidity of fermionic atoms in optical lattices. Phys. Rev.
Lett. 2002. 89. 220407.
[6] Lewenstein M. et al. Atomic Bose-Fermi mixtures in an optical lattice. Phys. Rev. Lett. 2004. 92.
050401.
[7] Efimov V. N. Energy levels arising from resonant two-body forces in a three-body system. Physics
Letters. 1970. 33(8). 563–564.
[8] Yafaev D. On the theory of the discrete spectrum of the three-particle Schr¨odinger operator.
Math. USSR-Sb. 1974. 23 535–559.
[9] Lakaev S. N. The Efimov’s effect of a system of three identical quantum lattice particles.
Funct. Anal. Its Appl. , 1993. 27. 15–28.
[10] Lakaev S. N. and Muminov Z. I. The Asymptotics of the Number of Eigenvalues of a Three-Particle
Lattice Schr¨odinger Operator. Funct. Anal. Appl. 2003. 37. 228–231.
[11] Abdullaev Zh. I. and Lakaev S. N. Asymptotics of the Discrete Spectrum of the Three-Particle
Schr¨odinger Difference Operator on a Lattice. Theor. Math. Phys. 136. 1096–1109.
[12] Albeverio S., Lakaev S. N., Muminov Z. I. “Schr¨o dinger operators on lattices. The Efimov effect and
discrete spectrum asymptotics. Ann. Inst. H. Poincar´e Phys. Theor. (2004). 5. 743–772.
[13] Dell’Antonio G., Muminov Z. I., Shermatova Y. M., On the number of eigenvalues of a model operator
related to a system of three-particles on lattices. J. Phys. A: Math. Theor. , 2011. 44. 315302.
[14] Khalkhuzhaev A. M., Abdullaev J. I., Boymurodov J. K. The Number of Eigenvalues of the Three-
Particle Schr¨odinger Operator on Three Dimensional Lattice. Lob. J. Math. 2022. 43(12). 3486–3495.
[15] Muminov M., Aliev N. Discrete spectrum of a noncompact perturbation of a three-particle
Schr¨odinger operator on a lattice. Theor. Math. Phys. 2015.1823(3). 381–396.
[16] Muminov Z. I., Aliev N. M., Radjabov T. On the discrete spectrum of the three-particle Schr¨o dinger
operator on a two-dimensional lattice. Lob. J. Math. 2022. 43(11). 3239–3251.
[17] Aliev N. M. Asymtotic of the Discrete Spectrum of the Three-Particle Schrodinger Operator on a
One-Dimensional Lattice. Lob. J. Math. 2023. 44(2). 491–501.
[18] Rabinovich V. S., Roch S. The essential spectrum of Schrodinger operators on lattice.
J. Phys. A.:Math. Gen. 2006. 39. 8377.
[19] Albeverio S., Lakaev S., Muminov Z.“On the structure of the essential spectrum for the three-particle
Schr¨odinger operators on lattices. Math. Nachr. 2007. 280. 699–716.
[20] Kholmatov Sh.Yu., Muminov Z. I. The essential spectrum and bound states of N-body problem in
an optical lattice. J. Phys. A: Math. Theor. 2018. 51. 265202.
[21] Muminov Z., Lakaev Sh. Aliev N. “On the Essential Spectrum of Three-Particle Discrete Schr¨odinger
Operators with Short-Range Potentials. Lob. J. Math. 2021. 42(6). 1304–1316.
[22] Lakaev S. N., Boltaev A. T. “The Essential Spectrum of a Three Particle Schr¨odinger Operator on
Lattices. Lob. J. Math. 2023. 44(3). 1176–1187.
[23] Jakubaba-Amundsen D. H. The HVZ Theorem for a Pseudo-Relativistic Operator . Ann. Henri
Poincar´e. 2007. 8. 337–360.
[24] Z. I. Muminov, Sh. Alladustov, Sh. Lakaev, “Spectral and threshold analysis of a small rank
perturbation of the discrete Laplacian”, J. Math. Anal. Appl., 496 (2021) 124827.
Copyright (c) 2024 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





