ON THE POINT SPECTRUM OF THE SCHRODINGER OPERATOR FOR A SYSTEM CONSISTING OF TWO IDENTICAL INFINITELY HEAVY BOSONS AND ONE LIGHT FERMION ON THE THREE-DIMENSIONAL LATTICE
##submission.downloads##
Biz uchta kvant mexanik zarrachalardan (ikki bir xil bozon va bitta fermiondan) iborat sistemaning
Hamiltonianini ko‘rib chiqamiz. Bu zarrachalar bir o‘lchamli panjarada nuqtada tortuvchi yoki
itaruvchi potensiallar orqali o‘zaro ta’sirlashadi.
Bozonlarning massasi cheksiz deb faraz qilingan holda, biz uch zarrachali diskret Shredinger operatori
H(K);K 2 T ning nuqtali spektrini o‘rganamiz. Bu operator, o‘zaro tortuvchi yoki itaruvchi ta’sir
kuchlariga bog‘liq holda, cheksiz ko‘p xos qiymatlarga ega bo‘ladi.
[1] Winkler K. et al. “Repulsively bound atom pairs in an optical lattice. Nature. 2006. 441. 853–56.
[2] Bloch I. Ultracold quantum gases in optical lattices. Nat. Phys. 2005. 1. 23–30.
[3] Jaksch D.and Zoller P. The cold atom Hubbard toolbox. Ann. of Phys. 2005. 315(1). 52–79.
[4] Thalhammer G. et al. Inducing an optical Feshbach resonance via stimulated Raman coupling.
Phys.Rev. A. 2005. 71. 033403.
[5] Hofstetter W. et al., “High-temperature superfluidity of fermionic atoms in optical lattices. Phys. Rev.
Lett. 2002. 89. 220407.
[6] Lewenstein M. et al. Atomic Bose-Fermi mixtures in an optical lattice. Phys. Rev. Lett. 2004. 92.
050401.
[7] Efimov V. N. Energy levels arising from resonant two-body forces in a three-body system. Physics
Letters. 1970. 33(8). 563–564.
[8] Yafaev D. On the theory of the discrete spectrum of the three-particle Schr¨odinger operator.
Math. USSR-Sb. 1974. 23 535–559.
[9] Lakaev S. N. The Efimov’s effect of a system of three identical quantum lattice particles.
Funct. Anal. Its Appl. , 1993. 27. 15–28.
[10] Lakaev S. N. and Muminov Z. I. The Asymptotics of the Number of Eigenvalues of a Three-Particle
Lattice Schr¨odinger Operator. Funct. Anal. Appl. 2003. 37. 228–231.
[11] Abdullaev Zh. I. and Lakaev S. N. Asymptotics of the Discrete Spectrum of the Three-Particle
Schr¨odinger Difference Operator on a Lattice. Theor. Math. Phys. 136. 1096–1109.
[12] Albeverio S., Lakaev S. N., Muminov Z. I. “Schr¨o dinger operators on lattices. The Efimov effect and
discrete spectrum asymptotics. Ann. Inst. H. Poincar´e Phys. Theor. (2004). 5. 743–772.
[13] Dell’Antonio G., Muminov Z. I., Shermatova Y. M., On the number of eigenvalues of a model operator
related to a system of three-particles on lattices. J. Phys. A: Math. Theor. , 2011. 44. 315302.
[14] Khalkhuzhaev A. M., Abdullaev J. I., Boymurodov J. K. The Number of Eigenvalues of the Three-
Particle Schr¨odinger Operator on Three Dimensional Lattice. Lob. J. Math. 2022. 43(12). 3486–3495.
[15] Muminov M., Aliev N. Discrete spectrum of a noncompact perturbation of a three-particle
Schr¨odinger operator on a lattice. Theor. Math. Phys. 2015.1823(3). 381–396.
[16] Muminov Z. I., Aliev N. M., Radjabov T. On the discrete spectrum of the three-particle Schr¨o dinger
operator on a two-dimensional lattice. Lob. J. Math. 2022. 43(11). 3239–3251.
[17] Aliev N. M. Asymtotic of the Discrete Spectrum of the Three-Particle Schrodinger Operator on a
One-Dimensional Lattice. Lob. J. Math. 2023. 44(2). 491–501.
[18] Rabinovich V. S., Roch S. The essential spectrum of Schrodinger operators on lattice.
J. Phys. A.:Math. Gen. 2006. 39. 8377.
[19] Albeverio S., Lakaev S., Muminov Z.“On the structure of the essential spectrum for the three-particle
Schr¨odinger operators on lattices. Math. Nachr. 2007. 280. 699–716.
[20] Kholmatov Sh.Yu., Muminov Z. I. The essential spectrum and bound states of N-body problem in
an optical lattice. J. Phys. A: Math. Theor. 2018. 51. 265202.
[21] Muminov Z., Lakaev Sh. Aliev N. “On the Essential Spectrum of Three-Particle Discrete Schr¨odinger
Operators with Short-Range Potentials. Lob. J. Math. 2021. 42(6). 1304–1316.
[22] Lakaev S. N., Boltaev A. T. “The Essential Spectrum of a Three Particle Schr¨odinger Operator on
Lattices. Lob. J. Math. 2023. 44(3). 1176–1187.
[23] Jakubaba-Amundsen D. H. The HVZ Theorem for a Pseudo-Relativistic Operator . Ann. Henri
Poincar´e. 2007. 8. 337–360.
[24] Z. I. Muminov, Sh. Alladustov, Sh. Lakaev, “Spectral and threshold analysis of a small rank
perturbation of the discrete Laplacian”, J. Math. Anal. Appl., 496 (2021) 124827.
Mulkiiyat (c) 2024 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..






.jpg)

.png)





