STRONG LAW OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES WITH VALUES IN RADEMACHER TYPE p BANACH SPACES
We consider functionals of the sequences of independent random variables with values in Rademacher
type p Banach spaces. Under some additional conditions we prove a strong law of large numbers for
the sequences of such functionals.
1. de Acosta A., Inequalities for B-valued random vectors with applications to the law of large numbers.
Ann.Probab. 9, 157-161. 1981.
2. Adler A., Rosalsky A.A. and Taylor R.L., Some strong laws of large numbers for sums of random
elelments,Bull. Inst. Math. Acad. Sinica 20 1992, pp. 335-357.
3. Azlarov T.A., Volodin N.A. Law of large numbers for identically distributed Banach-valued random
variables. Prob.ther. and its appl.1981, 26, v.3, 584-590.
4. Cantrell A. and Rosalsky A.A., Some strong laws of large numbers for Banach space valued summand
irrespective of their joint distributions, Stochastic Anal. Appl. 21 2003, pp.79-95.
5. Chobanyan S., Sh. Levental, H.Salehi., Strong law of large numbers under a general moment condition.
Elect. Comm. In Probab. 10.2005, pp.218-222.
6. Ledoux M., Talagrand M. Probability in Banach Spaces Isoperimetry and Processes. Springer-Verlag
Berlin Heidelberg , 2002.
7. Li D. , Qi Y ., Rosalsky A. A refinement of the Kolmogorov-Marcinkiewich-Zygmund strong law of large
numbers . Jour. Theor. Probab.,24. 2011, 1130–1156.
8. He Q., Pan L., Convergence properties for coordinatewise asymptotically negatively associated random
vectors in Hilbert space. Open Mathematics 2023; 21: 20220556
9. Hoffman-Jorgensen J., Pisier G. The laws of large numbers and the central limit theorem in Banach
spaces.// Ann. Of Probab.- 1976. – V.4. – P.587-599.
10. Rosalsky A. A., Thanh L. V., Strong and week laws of large numbers for double sums of independent
random elements in Rademacher type p Banach spaces. Stochastic Analysis and Applications,24. 2006,
pp.1097-1117
11. Rosalsky A. A., and Thahn L.V., On the strong laws of large numbers for sequences of blockwise
independent and blockwise p-orthogonal random elements in Rademacher type p Banach space. Prob.
And Math. Stat., Vol.27, Fasc.2 2007,pp.205-222.
12. Sharipov O.Sh. On probabilistic kharakterization of Banach spaces by weakly dependent random elements.
// Uzb. Methem.journal 1998, No.2, 86-91.
13. Sharipov O.Sh., Kushmurodov A.A., Strong law of large numbers for random fields with values in Banach
spaces. Uzbek Mathematical Journal. No.1, 2017, pp.165-171
14. Kwang H. H., Some convergence theorem for and random variables in a hilbert space with application.
Honam Mathematical J. 36 (2014), No. 3, pp. 679-688.
15. Zuparov T.M., Mamadaliev K.B. Strong law of large numbers for qwasistationary sequences in Hilbert
space. Izvestiya Academy of Sciences of UzSSR. Phiz-math. Series, 1982, No. 1, 15-19.
16. Borovkova S.A., Burton R.M., Dehling H.G. Limit theorems for functionals of mixing processes with
applications to U-statistics and dimension estimation. Transactions Of The American Mathematical
Society. Vol. 353, N.11, 2001. Pp. 4261–4318.
17. Sharipov O. Sh., Mukhtorov I. G., On the moment inequality for weakly dependent random variables
with values in Banach spaces of type p. Bulletin of the Institute of Mathematics , 2022, Vol. 5, No. 5,
ñòp.184-186
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





