INITIAL STAGES OF PERYLENE PRENUCLEATION ON VARIOUS SUBSTRATES
Understanding the clustering of perylene on surfaces as a prenucleation stage is crucial for organic electronics. This work investigates the influence of different surfaces on the initial organization of perylene. Molecular dynamics (MD) simulations, using the LAMMPS package and the ReaxFF potential, were employed to study the adsorption and clustering of perylene on Si(100){2×1}, Ni(111), and Ni(331) surfaces. The results demonstrate that perylene adsorption varies significantly depending on the surface: alignment along rows (Si(100){2×1}), a planar configuration (Ni(111)), and diverse orientations (Ni(331)). These adsorption regimes, dictated by the surface structure, influence prenucleation. The study highlights the crucial role of surface structure in determining prenucleation during perylene nanocrystal growth, laying a fundamental basis for designing organic nanostructures.
1. Katz, H.E.; Lovinger, A.J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y.-Y.; Dodabalapur, A. A Soluble and Air-Stable Organic Semiconductor with High Hole Mobility. Nature 404 (2000) 478.
2. Horowitz, G. Organic field-effect transistors. J. Mater. Res. 19 (2004) 1946.
3. Bai, Y.; Kirvassilis, D.; Xu, L.; Mavrikakis, M. Atomic and molecular adsorption on Ni(111). Surf. Sci. 679 (2019) 240.
4. Eremtchenko, M.; Schaefer, J. A.; Tautz, F. S. Molecular orientation in self-assembled monolayers. Nature 425 (2003) 602606.
5. Söhnchen, S.; Hänel, K.; Birkner, A.; Witte, G.; Wöll, C. Growth of perylene on Ag(111): Influence of substrate temperature. Chem. Mater. 17 (2005) 5297.
6. Unwin, P.J.; Jones, T.S. Structure and growth of perylene on Ag(111). Surf. Sci. 532 (2003) 1011.
7. Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Dehm, C.; Schütz, M.; Maisch, S.; Effenberger, F.; Brunnbauer, M.; Stellacci, F. Fast self-assembly of highly ordered, device-quality organic monolayers. Nature 431 (2004) 963.
8. Dimitrakopoulos, C.D.; Purushothaman, S.; Kymissis, J.; Callegari, A.; Shaw, J.M. Low-voltage organic transistors enabling flexible polymer-on-foil electronics. Science 283 (1999) 822.
9. Fujimoto, H.; Uda, T. Theoretical Study on Adsorption Structures and Electronic States of Organic Molecules on Si (100) Surfaces. J. Phys. Chem. C 115 (2011) 6125.
10. Zou, C.; Van Duin, A.C.T.; Huang, L. Development of a ReaxFF reactive force field for nickel and nickel oxide. J. Phys. Chem. A 117 (2013) 3296.
11. Newsome, D.A.; Sengupta, D.; Foroutan, H.; Russo, M. F.; Van Duin, A.C.T. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive Molecular Dynamics study, Part I. J. Phys. Chem. C 116 (2012) 16111.
12. [Momma K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Cryst 41 (2008) 653.
13. Husanova, D.; Ochilov, J.; Khalilov, U. Formation Onset of Flat-Perylene Prenucleation Clusters in Vacuum. Chemical Physics 579 (2024) 112191.
14. Rada, T.; Chen, Q.; Richardson, N. Adsorption of Perylene on Ag(111). Phys. Status Solidi B 241 (2004) 2353.
15. Lu, Y.; Yang, X. Molecular simulation of graphene growth by chemical vapor deposition on nickel using polycyclic aromatic hydrocarbons. Carbon 81 (2015) 312.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





