RELATIONSHIP BETWEEN THE CONCENTRATION PARAMETER AND INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS
This article investigates the empirical relationship between the concentration parameter, which characterizes the rate of stellar density increase toward the centers of globular clusters (GCs), and the masses of central intermediate-mass black holes (IMBHs). In this study, only theoretically derived values of IMBH masses are considered. The concentration parameters were calculated based on the surface density profiles obtained from Gaia DR2 observations. The concentration parameter can be employed as a diagnostic tool for assessing the properties and formation processes of central IMBHs in GCs
1. Nuritdinov S. N., Turaev S. J. and Mirtadjieva K. T., On Massive Black Holes in the Centers of Globular Clusters, Astronomy Reports, 2024, Vol. 68, No. 12, pp. 1385–1389.
2. N. Lützgendorf et al., Limits on intermediate-mass black holes in six Galactic globular clusters with integral-field spectroscopy, A&A 552, A49 (2013).
3. Bülent Kızıltan & Holger Baumgardt & Abraham Loeb, 2017. "An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae," Nature, Nature, vol. 542(7640), pages 203-205, February.
4. Noyola, Eva et al., 2008, Central Dynamics of Globular Clusters: The Case for a Black Hole in ω Centauri. Proceedings of the International Astronomical Union, IAU Symposium, Volume 246, p. 341-345. 5. Feldmeier et al., (2013). Indication for an intermediate-mass black hole in the globular cluster NGC 5286 from kinematics. Astronomy & Astrophysics, Volume 554, id.A63, 15 pp. 6. Vitral Е et al., (2023) An elusive dark central mass in the globular cluster M4. MNRAS 522, 5740–5757.
7. Maximilian Häberle et al., Fast-moving stars around an intermediate-mass black hole in ω Centauri, Nature, volume 631, pages 285–288 (2024).
8. Ferrarese, Laura; Merritt, David, (2000), A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies, ApJ, 539, L9. Rutgers Astrophysics Preprint Series No. 274.
9. Safonova, Margarita; Shastri, Prajval, (2010) Extrapolating SMBH correlations down the mass scale: the case for IMBHs in globular clusters, Astrophysics and Space Science, Volume 325, Issue 1, pp. 47-58.
10. Maccarone, Thomas J. and Servillat, Mathieu. Radio observations of NGC 2808 and other globular clusters: constraints on intermediate-mass black holes. MNRAS, Volume 389, Issue 1, pp. 379-384, (2008).
11. Bash, F. N. et al., (2008). Very Large Array Limits for Intermediate-Mass Black Holes in Three Globular Clusters, The Astronomical Journal, Volume 135, Issue 1, pp. 182-186.
12. H. Baumgardt and M. Hilker, (2018). A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters, MNRAS 478, 1520–1557.
13. Sedda, M. A., et al. (2019). "MOCCA-Survey Database I: Intermediate-Mass Black Holes in Globular Clusters." Monthly Notices of the Royal Astronomical Society, 484(3), 4421–4439.
14. Nuritdinov, S. N., et al. (2021). "To the Globular Cluster Classification Problem: Calculating the Concentration of Stars for 26 Clusters." Astronomy Letters, 47(7), 418–426.
15. de Boer, J.L. et al. (2019), Globular cluster number density profiles using Gaia DR2. MNRAS 485, pp. 4906-4935. 16. www.cosmic-lab.eu/catalog/
17. Turaev, S. J., et al. (2024). "Problems of Determining the Degree of Star Concentration Towards the Center of Globular Clusters" Astrophysical Bulletin, 2024, Vol. 79, No. 1, pp. 88–94.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





