LIE ALGEBRA OF DIVERGENCE-FREE VECTOR FIELDS AND SOLENOIDALITY OF KILLING VECTOR FIELDS
The article investigates solenoidal vector fields and demonstrates that they form
a Lie algebra with respect to their Lie bracket, while also proving that Killing
vector fields are solenoidal. These fields are pivotal in the Helmholtz decomposition
theorem and have diverse applications, such as in the design of solenoid valves
and electromagnets. Furthermore, the proven theorems confirm that the space of
solenoidal vector fields constitutes a Lie algebra, with the Lie bracket acting as the
multiplication operation.
1. Kochin N.E. Vector calculus and the beginnings of tensor calculus (in russian). 9th ed.
M., 1965.
2. Butuzov V.F. Mathematical analysis in questions and tasks (in russian). Ed.5, M.:
Fizmatlit, 2001. 480 p.
3. Kompaneets A.S. Theoretical physics. 2nd ed. M., 1957.
4. Gavrilov V.G. Multiple and curvilinear integrals. Elements of field theory: textbook. for
universities / V. G. Gavrilov, E. E. Ivanova, V. D. Morozova; ed. V. S. Zarubina, A.
P. Krishchenko. 2nd ed., stereotype. M.: Publishing house of MSTU im. N. E. Bauman,
2003. 496 p.
5. Barbarosie, Cristian(2011). Representation of divergence-free vector fields. Quart. Appl.
Math. 69, no. 2, 309–316.
6. R. Kotiuga (1991). Clebsch Potentials and the Visualization of Three-Dimensional
Solenoidal Vector Fields. IEEE Transactions on Magnetics 27, no. 5, 3986–3989.
7. Babin, A., Figotin, A. (2016). The Helmholtz Decomposition. In: Neoclassical Theory of
Electromagnetic Interactions. Theoretical and Mathematical Physics. Springer, London.
https://doi.org/10.1007/978-1-4471-7284-0-44
8. Aslonov J., Bayturayev A. Lorentz Transformations Preserving Second-Order Curves
(2024) AIP Conference Proceedings, 3244 (1), DOI: 10.1063/5.0242265.
9. Ahmad Shahid Khan, Saurabh Kumar Mukerji. "Electromagnetic Fields: Theory And
Applications”, 2020, CRC. Press, https://doi.org/10.1201/9781003046134
10. Andrei D. Polyanin, Alexei Chernoutsan. A Concise Handbook of Mathematics,
Physics, and Engineering Sciences, Chapman & Hall/CRC Press, 2010, 1125 pages,
https://doi.org/10.1201/b10276
11. Aslonov J.O. Abstracts of the reports of the international scientific conference
"Mathematical analysis and its applications in modern mathematical physics http://confmatem2022.
samdu.uz , Samarkand, Uzbekistan, September 23-24, 2022.
12. Aslonov J.O. Geometry of some vector fields. Abstracts of the international scientific
conference "Modern problems of applied mathematics and information technologies Al-
Khwarizmi 2021 15-17 November, 2021, Fergana, Uzbekistan.
13. Bourne D.E. Kendall P.C. "Vector Analysis and Cartesian Tensors Routledge, 2017, CRC.
Press, https://doi.org/10.1201/9780203734414.
14. Gerardo F. Torres del Castillo. Differentiable Manifolds: A Theoretical Physics Approach.
Birkhauser Cham, 2020. https://doi.org/10.1007/978-3-030-45193-6.
15. Satya Narayanan, Swapan K. Saha. Waves and oscillations in nature: An Introduction,
Chapman & Hall/CRC Press, 2015, https://doi.org/10.1201/b18492.
16. Narmanov, A. Y. and Aslonov, J. O., “On the geometry of the orbits of Killing vector
fields”, arXiv e-prints, Art. no. arXiv:1203.3690, 2012. doi:10.48550/arXiv.1203.3690.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





