PERIFRAZ GENERATSIYA QILISH ALGORITMLARI TAHLILI (O‘ZBEK, INGLIZ VA RUS TILLARI MISOLIDA)
##submission.downloads##
Ushbu maqolada perifraz generatsiyasi algoritmlarining texnik va uslubiy asoslari o‘zbek, ingliz va rus tillari misolida taqqoslab tahlil qilinadi. Tadqiqotda seq2seq, Transformer (BERT, T5) hamda ko‘p tilli modellar (mBART, XLM-R) asosidagi yondashuvlar o‘rganildi. Har bir tilning sintaktik va morfologik xususiyatlari, ularning algoritmik moslashuvga ta’siri misollar orqali ko‘rsatildi. O‘zbek tilining agglutinativ tuzilmasi tufayli uni modelga moslashtirishdagi muammolar hamda transfer learning asosida yechimlar taklif qilindi.
Chen, Q., Zhu, X., Ling, Z., Wei, S., Jiang, H. (2018). Enhancing Sentence Embedding with Generalized Pooling. ACL, pp. 448–457.
2. Mallinson, J., Sennrich, R., Lapata, M. (2017). Paraphrasing Revisited with Neural Machine Translation. EACL, pp. 400–410.
3. Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention Is All You Need. NeurIPS, pp. 5999–6009.
4. Raffel, C., Shazeer, N., Roberts, A., et al. (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. JMLR, 21(140), pp. 1–67.
5. Al-Shameri, F., Al-Khalifa, H. (2024). Paraphrasing Approaches for Arabic and Related Morphologically Rich Languages. LREC, p. 6.
6. Prakash, A., Hasan, S. A., Lee, K., et al. (2016). Neural Paraphrase Generation with Stacked Residual LSTM Networks. COLING, pp. 1243–1252.
7. Sharipov, S. (1978). O‘zbek tilining grammatik qurilishi. Toshkent: Fan.
8. Rahmatullayev, A. (2022). O‘zbek tilining morfologik xususiyatlari va kompyuter lingvistikasi. Tashkent: O‘zMU nashriyoti.
9. Gerasimov, V. (2015). Zadachi Voyennoy Nauki, Obzor voyenno-politicheskoy obstanovki v mire. http://dokwar.ru/publ/novosti_i_sobytija/mnenie/zadachi_voennoj_nauki/9-1-0-681 (retrieved 02.02.2015)
10. Carr, J. (2012). Inside Cyber Warfare. Mapping the Cyber Underworld. O’Reilly, 2nd edition.
11. Çelikyilmaz, A., Bosselut, A., He, X., Choi, Y. (2021). Deep Language Generation for Agglutinative Languages: The Case of Turkish. ACL Anthology, pp. 88–96.
Mulkiiyat (c) 2025 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..






.jpg)

.png)





