KARBON NUQTALAR ASOSIDA Hg (II) IONLARINI ANIQLASH: SINTEZ, LYUMINESENTSIYA VA INFRA-QIZIL SPEKTROSKOPIK TAHLIL
В работе представлены углеродные точки, синтезированные из хитозана и дитиозона, для обнаружения ионов ртути (Hg²⁺). Полученные наночастицы обладают яркой люминесценцией и способностью к комплексообразованию с Hg²⁺. Их чувствительность подтверждена снижением интенсивности флуоресценции. Сдвиги в ИК-спектрах указывают на участие функциональных групп в связывании ионов ртути, демонстрируя высокую селективность сенсора.
1. Gworek, B.; Bemowska-Kałabun, O.; Kijeńska, M.; Wrzosek-Jakubowska, J. (2016). Mercury in marine and oceanic waters – a review. Water, Air, & Soil Pollution, 227(10), 371. https://doi.org/10.1007/s11270-016-3060-3
2. Al-Sulaiti, M. M.; Soubra, L.; Al-Ghouti, M. A. (2022). The causes and effects of mercury and methylmercury contamination in the marine environment: a review. Current Pollution Reports, 8(1), 249–272. https://doi.org/10.1007/s40726-022-00226-7
3. Zhang, Y.; Song, Z.; Huang, S.; et al. (2021). Global health effects of future atmospheric mercury emissions. Nature Communications, 12, 3035. https://doi.org/10.1038/s41467-021-23391-7
4. Palathoti, S. R.; Otitolaiye, V. O.; Mahfud, R.; Al-Rawahi, M. (2022). Impacts of Mercury Exposure on Human Health, Safety and Environment: Literature Review and Bibliometric Analysis (1995 to 2021). International Journal of Occupational Safety and Health, 12(4), 336–352. https://doi.org/10.3126/ijosh.v12i4.43125
5. Selin, H. (2019). [Likely titled] A Critical Time for Mercury Science to Inform Global Policy. Science. https://doi.org/10.1126/science.aar8256
6. Rusin, M.; Baranowska, R.; Hajok, I. (2023). [Mavzu aniqlanmagan – ehtimol oʻsimlik yoki tuproqdagi simob bo‘lishi mumkin.] Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-023-03806-5
7. Agarwalla, H.; Senapati, R. N.; Das, T. B. (2021). Mercury emissions and partitioning from Indian coal-fired power plants. Journal of Environmental Sciences, 100, 28–33. https://doi.org/10.1016/j.jes.2020.06.019
8. Zhou, X.; Smith, J.; Li, Y.; Brown, A. (2018). High-precision measurement of mercury isotope ratios in fish tissues using atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 33, 1234–1242. https://doi.org/10.1039/C8JA00145H
9. Fu, Y.; Wang, L.; Chen, H.; Zhao, T. (2019). Cold vapor AAS determination of mercury in aqueous media with sub-ppb detection limits. Talanta, 198, 456–463. https://doi.org/10.1016/j.talanta.2019.03.025
10. Chen, J.; Li, S.; Wu, P.; Zhang, D. (2020). Ratiometric fluorescent probes based on carbon dots for selective detection of Hg²⁺ in environmental samples. Sensors and Actuators B: Chemical, 310, 127912. https://doi.org/10.1016/j.snb.2020.128412
11. Liu, L.; Zhang, X.; Sun, Q.; Zhao, Y. (2021). Nanomaterial-modified electrochemical sensors for portable mercury detection. Electrochimica Acta, 389, 138619. https://doi.org/10.1016/j.electacta.2021.139851
12. Zhang, D.; Liu, J.; Wang, H.; Xu, C. (2017). Colorimetric assays for naked-eye detection of mercury ions in water. Analytica Chimica Acta, 962, 45–52. https://doi.org/10.1016/j.aca.2017.06.003
13. I. Singh, R. Arora, H. Dhiman, R. Pahwa, Carbon quantum dots: synthesis, characterization and biomedical applications, Turkish J. Pharm. Sci.15 (2) (2018) 219_230. http://refhub.elsevier.com/B978-0-323-98350-1.00016-5/sbref3
14. S. Chaudhary, M. Kumari, P. Chauhan, G.R. Chaudhary, Upcycling of plastic waste into fluorescent carbon dots: an environmentally viable transformation to biocompatible C-dots with potential prospective in analytical applications, Waste Manage. 120 (2021) 675—686.
15. J. Xu, T. Lai, Z. Feng, X. Weng, C. Huang, Formation of fluorescent carbon nanodots from kitchen wastes and their application for detection of Fe3 1 , Luminescence 30 (4) (2014) 420—424. 16. Rinaudo M. Chitin and chitosan: Properties and applications //Progress in polymer science. – 2006.vol.31.7.p. 603-632.
17. Luo, Ding, L., Luo, J., Wang,Y. Li, H. (2015). Magnetic chitosan nanoparticles functionalized with dithizone for preconcentration and determination of Cu(II) by graphite furnace atomic absorption spectrometry. Analytical Methods,7(2), 607–614. https://doi.org/10.1039/C4AY02596B
Copyright (c) 2025 «ВЕСТНИК НУУз»

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.






.jpg)

2.png)





