ОТБОР ГЕНОТИПОВ С ВЫСОКИМ КАЧЕСТВОМ ЗЕРНА ДЛЯ СЕЛЕКЦИОННО-ГЕНЕТИЧЕСКИХ ИССЛЕДОВАНИЙ ИЗ СИНТЕТИЧЕСКИХ ГЕКСАПЛОИДНЫХ ПШЕНИЦЫ ЛИНИЙ
В данном исследовании были изучены параметры качества зерна синтетических гексаплоидных линий пшеницы и сравнены с районированными сортами. Согласно результатам, наибольшее содержание белка и клейковины зафиксировано у генотипов Ukr-Od 952.92/Ae.Squarrosa (34), Ukr-Od 952.92/Ae.Squarrosa (31), Aysberg/Ae.Squarrosa (103)//Demir, Pandur/Ae.Squarrosa (84), Ukr-Od 1530.94/Ae.Squarrosa (48), Ukr-Od 952.92/Ae.Squarrosa (37) и Pandur/Ae.Squarrosa(87). Было обнаружено, что синтетические пшеничные линии содержат на 28,5% больше белка и на 5,5% больше клейковины, районированные сорта.
1. Alipour, H. et al. Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. Front. Plant Sci. 8, 1293, https://doi.org/10.3389/fpls.2017.01293 (2017).
2. Allen, A. M. et al. Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploidy wheat (Triticum aestivum L.). Plant Biotechnol. J. 11, 279–295 (2013).
3. Bhatta, M., Morgounov, A., Belamkar, V., Poland, J. & Baenziger, P. S. Unlocking the novel genetic diversity and population structure of Synthetic Hexaploid wheat. BMC Genomics 19, 591, https://doi.org/10.1186/s12864-018-4969-2 (2018).
4. Caldwell, K. S. et al. Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics. 167, 941– 947 (2004).
5. Cavanagh, C. R. et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploidy wheat landraces and cultivars. Proc. Natl. Acad. Sci. 110, 8057–8062 (2013).
6. Cox, T. Deepening the wheat gene pool. J. Crop Prod. 1, 145–168 (1997)
7. Davey, J. W. et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12, 499–510 (2011).
8. Jafarzadeh, J. et al. Breeding value of primary synthetic wheat genotypes for grain yield. PLoS ONE 11, e0162860, https://doi.org/10.1371/journal.pone.0162860 (2016).
9. Jun LI Hong‐Shen WAN Wu‐Yun YANG. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes Journal of Systematics and Evolution 52 (6): 735–742 (2014) doi: 10.1111/jse.12110)
10. Ogbonnaya, F. C. et al. Yield of synthetic backcross-derived lines in rainfed environments of Australia. Euphytica 157, 321– 336 (2007)
11. Sehgal, D. et al. Identification of genomic regions for grain yield and yield stability and their epistatic interactions. Sci. Reports. 7, 41578, https://doi.org/10.1038/srep41578 (2017)
12. Varshney, R. K., Nayak, S. N., May, G. D. & Jackson, S. A. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 27, 522–530 (2009).
13. Zhang, P. et al. Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcrossderived lines using SSR markers. Mol. Breed. 15, 1–10 (2005)
Copyright (c) 2025 «ВЕСТНИК НУУз»

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.






.jpg)

2.png)





