ИННОВАЦИОННЫЕ НАПРАВЛЕНИЯ ФОРМИРОВАНИЯ ЛОГИЧЕСКОГО МЫШЛЕНИЯ В ОБУЧЕНИИ МАТЕМАТИКЕ НА ОСНОВЕ ТЕХНОЛОГИЙ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА
Технологии искусственного интеллекта (ИИ) радикально изменяют многие аспекты системы образования, и процесс их постепенной интеграции в преподавание математики стремительно развивается. В данном исследовании анализируются основные направления и актуальные научные результаты, связанные с применением технологий ИИ в процессе обучения математике. Рассматриваются роль и значение обучения на основе данных (Data-Driven Learning (DDL)), обработки естественного языка (Natural Language Processing (NLP)) в формировании логического и рефлексивного мышления обучающихся.
1. Ai, H. (2017). Providing graduated corrective feedback in an intelligent computer-assisted language learning environment. ReCALL, 29(3), 313 - 334.
2. Barrot, J. S. (2023). Using automated written corrective feedback in the writing classrooms: Effects on L2 writing accuracy. Computer Assisted Language Learning, 36(4), 584 - 607.
3. Bibauw, S., François, T., & Desmet, P. (2019). Discussing with a computer to practice a foreign language: Research synthesis and conceptual framework of dialogue-based CALL. Computer Assisted Language Learning, 32(8), 1 - 51.
4. Boulton, A., & Vyatkina, N. (2021). Thirty years of data-driven learning: Taking stock and charting new directions over time. Language Learning & Technology, 25(3), 66 - 89.
5. Chen, H. H. J., Yang, C. T. Y., & Lai, K. K. W. (2023). Investigating college EFL learners’ perceptions toward the use of Google Assistant for foreign language learning. Interactive Learning Environments, 31(3), 1335 - 1350.
6. Chinkina, M., Ruiz, S., & Meurers, D. (2020). Crowdsourcing evaluation of the quality of automatically generated questions for supporting computer-assisted language teaching. ReCALL, 32(2), 145 - 161.
7. Choi, I. C. (2016). Efficacy of an ICALL tutoring system and process-oriented corrective feedback. Computer Assisted Language Learning, 29(2), 334 - 364.
8. Crosthwaite, P., & Steeples, B. (2022). Data-driven learning with younger learners: Exploring corpus-assisted development of the passive voice for science writing with female secondary school students. Computer Assisted Language Learning. Advance online publication. https://doi.org/10.1080/09588221.2022.2068615
9. Daniels, P., & Iwago, K. (2017). The suitability of cloud-based speech recognition engines for language learning. The JALT CALL Journal, 13(3), 229 - 239.
10. Ebadi, S., & Saeedian, A. (2015). The effects of computerized dynamic assessment on promoting at-risk advanced Iranian EFL students’ reading skills. Issues in Language Teaching, 4(2), 1 - 26.
11. Ebadi, S., & Rahimi, M. (2019). Mediating EFL learners’ academic writing skills in online dynamic assessment using Google Docs. Computer Assisted Language Learning, 32(5 - 6), 527 - 555.
12. Encyclopedia Britannica. (2021). Artificial intelligence. https://www.britannica.com/technology/artificial-intelligence.
13. Evers, K., & Chen, S. (2022). Effects of an automatic speech recognition system with peer feedback on pronunciation instruction for adults. Computer Assisted Language Learning, 35(8), 1869 – 1889.
14. Hadley, G., & Charles, M. (2017). Enhancing extensive reading with data-driven learning. Language Learning & Technology, 21(3), 131 - 152.
15. Han, T., & Sari, E. (2022). An investigation on the use of automated feedback in Turkish EFL students’ writing classes. Computer Assisted Language Learning. Advance online publication. https://doi.org/10.1080/09588221.2022.2067179.
16. Liu, S., & Yu, G. (2022). L2 learners’ engagement with automated feedback: An eye-tracking study. Language Learning & Technology, 26(2), 78 - 105.
17. Mindzak, M., & Eaton, S. E. (2021). Artificial intelligence is getting better at writing, and universities should worry about plagiarism. The Conversation. https://theconversation.com/artificial-intelligence-is-getting-better-at-writing-and-universities-should-worry-about-plagiarism-160481.
18. Pérez-Paredes, P. (2022). A systematic review of the uses and spread of corpora and data-driven learning in CALL research during 2011 - 2015. Computer Assisted Language Learning, 35(1 - 2), 36 - 61.
19. Pérez-Paredes, P., Guillamón, C. O., & Jiménez, P. A. (2018). Language teachers’perceptions on the use of OER language processing technologies in MALL. Computer Assisted Language Learning, 31(5 - 6), 522 - 545.
20. Pikhart, M. (2020). Intelligent information processing for language education: The use of artificial intelligence in language learning apps. Procedia Computer Science, 176, 1412 - 1419.
Copyright (c) 2025 «ВЕСТНИК НУУз»

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.






.jpg)

2.png)





