SOLVING A BOUNDARY VALUE PROBLEM FOR THE FIRST ORDER DIFFERENTIAL EQUATION INVOLVING THE PRABHAKAR OPERATOR
##submission.downloads##
Ushbu ishda Prabhakar kasr tartibli hosilasi qatnashgan birinchi tartibli xususiy hosilali differensial
tenglama to’g‘ri to‘rtburchakli sohada qaralgan. Bu tenglama uchun bir chegaraviy masalaning bir
qiymatli yechilishi o‘rganilgan. Bu masalaning yechimini topish uchun Riman usulidan foydalanilgan.
Riman funksiyasiga nisbatan yordamchi masala hosil qilingan. Yordamchi masalani Laplas
almashtirishi yordamida oddiy differensial tenglama uchun Koshi masalasiga olib kelingan va teskari
Laplas almashtirishini qo‘llab yordamchi masalaning yechim formulasi, ya’ni berilgan masalaning
Riman funksiyasi topilgan. So’ngra Riman metodidan foydalanib dastlabki masalaning yechimi
topilgan. Topilgan yechim masalaning shartlarini qanoatlantirishi uchun berilgan funksiyalarga
yetarli shartlar topilgan.
1. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, Elsevier, 2006.
2. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, 2010.
3. R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics
approach,” Physics Reports, vol. 339, no. 1, pp. 1-77, 2000.
4. I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
5. C. A. Monje et al., Fractional-order Systems and Controls: Fundamentals and Applications, Springer,
2010.
6. V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields
and Media, Springer, 2011.
7. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and
Applications, Gordon and Breach Science Publishers, 1993.
8. A.V. Pskhu, Solution of a Boundary Value Problem for a Fractional Partial Differential Equation.
Differential Equations 39, 1150-1158 (2003). https://doi.org/10.1023/B:DIEQ.0000011289.79263.02
9. A.V. Pskhu, Boundary value problem for a first-order partial differential equation with
a fractional discretely distributed differentiation operator. Diff Equat 52, 1610-1623 (2016).
https://doi.org/10.1134/S0012266116120089
10. T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel,”
Yokohama Mathematical Journal, vol. 19, pp. 7-15, 1971.
11. A. Giusti, F. Mainardi, and C. Colombaro, “The Prabhakar or three-parameter Mittag-Leffler function:
theory and applications,” Fractional Calculus and Applied Analysis, vol. 23, no. 4, pp. 856-887, 2020.
12. F. Mainardi and R. Garrappa, “The Mittag-Leffler function and the Prabhakar function,” Journal of
Mathematical Analysis and Applications, vol. 426, no. 1, pp. 124-145, 2015.
13. Z. Raza, T. Muhammad, Z. Han, and M. Nawaz, “Influence of Newtonian heating and Brinkman type
nanofluid flow with Prabhakar fractional derivatives,” Fluids, vol. 6, no. 5, p. 265, 2022.
14. M. Asjad, S. Shehzad, and I. Khan, “Modeling anomalous heat and mass transfer in porous media via
Prabhakar fractional operators,” Thermal Science, vol. 25, Suppl. 2, pp. 509-518, 2021.
15. R. Garra, R. Gorenflo, F. Polito, Z. Tomovski. Hilfer-Prabhakar derivatives and some applications. Appl.
Math. Comput. 242, (2014), 576-589.
16. Turdiev Kh.N., Usmonov D.A. The Goursat’s problem for generalized (fractional) hyperbolic-type
equation. Uzbek Mathematical Journal, 2025, Volume 69, Issue 2, pp.300-306.
17. D’Ovidio, M., Polito, F. (2018). Fractional diffusion-telegraph equations and their associated stochastic
solutions. Theory Probab. Appl., 62(4), 552–574.
18. A.V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka. - Moskva: Nauka, 2005. - 200 s.
- ISBN 5-02-033721-8.
Mulkiiyat (c) 2025 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..






.jpg)

.png)





