NONLOCAL BOUNDARY VALUE PROBLEM FOR A SYSTEM OF NONHOMOGENEOUS PARABOLIC TYPE EQUATIONS WITH TWO DEGENERATE LINES
##submission.downloads##
Ushbu ish ikkita buzilish chizig’iga ega bo’lgan bir jinsli bo’lmagan parabolik tipdagi
tenglamalar sistemasi uchun nolokal chegaraviy masalaning shartli turg’riligini
o’rganishga bag’ishlangan. Ushbu ishda A.N. Tixonov bo’yicha masalaning shartli
turg’inligi isbotlangan, ya’ni korrektlik to’plamida yagonalik va shartli turg’unlik
teoremalari isbotlangan. Yechim uchun Aprior baho olishda logarifmik qavariqlik
usulidan va S.G.Pyatkov tomonidan qaralgan spektral masala xossalaridan
foydalanilgan
1. Ashyralyev A, Yildirim O., On nonlocal boundary value problems for hyperbolic-parabolic
equations. Taiwanese Journal of Mathematics,2007, 11, Issue 4,P. 1075-1089.
2. Zouyed F., Rebbani F. , Boussetila N., Ona Class of Multitime Evolution Equations with
Nonlocal Initial Conditions. Abstract and Applied Analysis, Article ID-16938, 2007,P.
1-26.
3. Kozhanov A.I., On the solvability of some spatial nonlocal boundary value problems for
linear parabolic equations., Vestn. Samar. Un. Ser. natural science, 3,2008, Issue 62,P.
165-174.
4. Sabitov K.B., Nonlocal problem for an equation of parabolic-hyperbolic type in a
rectangular domain., Mat. Notes, 2011, 89, Issue 4,P. 596-602.
5. Djamalov S.Z., A nonlocal boundary value problem for a mixed type equation of the
second kind in a multidimensional space., Bulletin of the Institute of Mathematics,
2018,No 1 P. 1-8.
6. Shadrina I.A., Nonlocal boundary value problems of Samarskii for parabolic equations
with changing direction of time., Mathematical Notes of NEFU, 2012, No19, Issue 2, P.
171-186.
7. Larkin A.N., Novikov V.A., Yanenko N.N, Nonlinear equations of variable type.
Novosibirsk, Science 1983.
8. Krein S.G.,Prozorovskaya O.I., Approximate methods of solving ill-posed problems,
U.S.S.R. Comput. Math. Math. Phys., 1963. Vol.3 No1, 1963, P. 153-167.
9. Lavrent‘ev M.M.,Saveliev L.Y., Theory of operators and ill-posed problems., Publishing
House of the Institute of Mathematics, Novosibirsk, 2010.
10. Levine H.A., Logarithmic convexity, first order differential inequalities and some
applications, Trans. Amer. Math. Soc., Issue. 152. 1970, P. 299-320.
11. Kozhanov A.I. Composite Type Equations and Inverse Problems., VSP, Utrecht, The
Netherlands, 1999.
12. Bukhgeim A.L., Ill-posed problems, number theory and tomography, Sib. Math.
Journal.,Vol 33. Issue. 3. 1992, P. 389-402.
13. Fayazov K.S., Lavrent‘ev M.M., Couchy problem for partial differential equations with
operator coefficients in space, Journal inverse and ill-posed problems., Vol. 2., 1994, P.
283-296.
14. Fayazov K.S., The Cauchy problem for an elliptic equation with operator coefficients,
Siberian Math. Journal, Vol. 36., 1995 P. 404-411.
15. Fayazov K.S., Khudayberganov Y.K., Ill-posed boundary-value problem for a system
of partial differential equations with two degenerate lines, Journal of Siberian Federal
University. Mathematics and Physics., Vol. 12., 2019, P. 392-401
16. Fayazov K.S.,Khazhiev I.O., Conditional correctness of the initial-boundary value problem
for a system of high-order mixed-type equations, Izv. Vyssh. Uchebn. Zaved. Mat., No22,
202), P. 62-75.
17. Khajiev I.O., Conditional correctness and approximate solution of boundary value
problem for the system of second order mixed-type equations, J. Sib. Fed. Univ. Math.
Phys.,No11, Issue. 2., 2018, P. 231-241.
18. Fayazov K.S., Khudayberganov Y.K., Ill-posed boundary value problem for mixed type
system equations with two degenerate lines, Siberian Electronic Mathematical Reports,
Vol.17. 2020, P. 647-660.
19. Fayazov K.S.,Khudayberganov Y.K., An ill-posed boundary value problem for a mixed
type second-order differential equation with two degenerate lines, Mathematical notes of
nefu, Vol. 30 2003, No1, P. 51-62.
20. Pyatkov S.G., Properties of Eigen functions of a certain spectral problem and their
applications, Some Applications of Functional Analysis to Equations of Mathematical
Physics. Inst. Mat. Novosibirsk., 1986, P. 65-84.
21. Krein M.G.,Gokhberg I.T., Introduction to the theory of linear non-self-adjoint operators
in Hilbert space.,Moscow: Scinse 1965.
22. Pyatkov S.G., Some properties of proper and attached functions of unfamiliar Sturm-
Liouville problems, Nonclassical equations of mathematical physics. Collection of scientific
papers. Novosibirsk: Publishing House of the Institute of Mathematics, 2005, P. 240-251.
Mulkiiyat (c) 2025 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..






.jpg)

.png)





