Задача коши для уравнения типа Эйри с разными дробными производными на звездообразном графе
##submission.downloads##
Bu maqolada yulduzsimon grafda berilgan, har xil hosilalarga ega bo’lgan Eyri tipidagi tenglamalar
uchun Koshi masalasi tadqiq qilingan. Qo’yilgan masalaning yechimi mavjudligi va yagonaligi
isbotlangan.
[1.] Alikhanov A. A. A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order
Equations. Differential equations, Vol. 46. Issue 5. 658-664(2010).
[2.] Carpintery A., Mainardi F. (Eds.) Fractals and Fractional Calculus in Continuum Mechanics. CIAM
Cources and Lectures. Vol. 376, Wien: Springer (1997).
[3.] Cattabriga L. Un problema al contorno per una equazione parabolica di ordine dispari. Annali della
Scuola Normale Superiore di Pisa. Vol. 13. Issue 3. 163-203 (1959).
[4.] Cavalcante M. The Korteweg-de Vries equation on a metric star graph. Zeitschrift fur angewandte
Mathematik und Physik. 69:124 (2018).
[5.] Gnutzmann S. and Smilansky U., Quantum graphs: Applications to quantum chaos and universal
spectral statistics. Advances in Physics. Vol. 55, Issue 5-6, 527-625 (2006).
[6.] Hilfer R. (Ed.) Applications of Fractional Calculus in Physics. Singapore: WSPC (2000).
[7.] Himonas, D. Mantzavinos, and F. Yan. The Korteweg-de Vries equation on an interval. Journal of
Mathematical Physics, 60(5), pp. 25, (2019).
[8.] Khudayberganov G., Sobirov Z., Eshimbetov M. Unified transform method for the Schrodinger
equation on a simple metric graph. Journal of Siberian Federal University, Mathematics and Physics. Volume
12, Issue 4. p. 412-420 (2019)
[9.] Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential
Equations. North-Holland Mathematics Studies. Vol. 204. Amsterdam, etc.: Elsevier (2006).
[10.] Kivshar Y.S. and Agarwal G.P., Optical Solitons: From Fibers to Photonic Crystals. Academic, San
Diego (2003).
[11.] Kottos T. and Smilansky U. Periodic Orbit Theory and Spectral Statistics for Quantum Graphs.
Annals of Physics. Vol. 274, Issue 1, 76-124 (1999).
[12.] Mainardi F., Mura A. and Pagnini G. The M-Wright function in time-fractional diffusion processes:
a tutorial survey. International Journal of Differential Equations. Vol. 3. (2010).
[13.] Metzler R., Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics
approach. Phys. Reports. Vol. 339, 1-77 (2000).
[14.] Mugnolo D., Noja D. and Seifert Ch. Airy-type evolution equations on star graphs. Analysis and
PDE. Vol. 11, Issue 7 (2018).
[15.] Pelloni B. Well-posed boundary value problems for linear evolution equations on a finite interval.
Mathematical Proceedings of the Cambridge Philosophical Society, 136, p. 361-382 (2004).
[16.] Pskhu A.V. On Solution Representation of Generalized Abel Integral Equation, Hindawi Publishing
Corporation Journal of Mathematics Volume 2013, Article ID 106251, 5 pages.
[17.] Rakhimov K.U. The method of potentials for the Airy equation of fractional order. Bulletin of
National University of Uzbekistan: Mathematics and Natural Sciences. volume 3, Issue 2. p 222-235 (2020).
[18.] Rakhimov K.U., Sobirov Z.A., Jabborov N.M. The time-fractional Airy equation on the metric
graph. Journal of Siberian Federal University, Mathematics and Physics, 2021, 14 (3), 376—388.
[19.] Seifert Ch. The linearized Korteweg-de-Vries equation on general metric graphs. The Diversity and
Beauty of Applied Operator Theory. 449-458 (2018).
[20.] Sobirov Z.A., Uecker H., Akhmedov M.I. Exact solutions of the Cauchy problem for the linearized
KdV equation on metric star graphs. Uzbek Mathematical Journal, Vol.3, 143-154 (2015).
[21.] Sobirov Z.A., Akhmedov M.I., Uecker H. Cauchy problem for the linearized KdV equation on general
metric star graphs. Nanosystems: Physics, Chemistry, Mathematics. Vol. 6. Issue 2, 198—204 (2015).
[22.] Sobirov Z.A., Rakhimov K.U. Cauchy problem for the Airy equation with fractional time-fractional
on a star-shaped graph. Institute of Mathematics Bulletin, Uzbekistan. vol. 5. 40-49 (2019).
[23.] Sobirov Z.A., Akhmedov M. I., Karpova O.V., Jabbarova B. Linearized KdV equation on a metric
graph. Nanosystems: Physics, Chemistry, Mathematics. Vol. 6, Issue 6. 757-761(2015).
[24.] Джураев Т. Краевые задачи для составного и смешанно-составного типов. стр. 240., Ташкент
(1979).
[25.] Псху А.В. Уравнения в частных производных дробного порядка, стр. 200. Москва (2005).
[26.] Псху А.В. Фундаментальное решение уравнения третьего порядка с дробной производной.
Узбекский математический журнал. No. 4. 119-127 (2017).
Mulkiiyat (c) 2025 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..






.jpg)

.png)





