SOME REMARK ON THE INVARIANT MEASURE OF CIRCLE MAPS WITH BREAK POINTS
In this paper we study invariant measure of circle homeomorphisms with break type of singularities.
It is proven that invariant measure of circle homeomorphisms have four break points with trivial
total product of jumps and irrational rotation numbers of bounded type is singular with respect to
Lebegue measure on the circle.
Denjoy A. Sur les courbes d´efinies par les ´equations diff´erentielles `a la surface du tore. J. Math. Pures
Appl.,1932, V.11, P.333-375.
2. Katznelson Y. and Ornstein D. The absolute continuity of the conjugation of certain diffeomorphisms of
the circle. Ergod. Theor. Dyn. Syst.,1989, V.9, P.681-690.
3. Khanin K.M. and Sinai Y.G. Smoothness of conjugacies of diffeomorphisms of the circle with rotations.
Russ. Math. Surv., 1989, V.44, P.69-99.
4. Herman M. Sur la conjugaison diff´erentiable des diff´eomorphismes du cercle `a des rotations. Inst. Hautes
Etudes Sci. Publ. Math., 1979, V.49, P.225-234.
5. Dzhalilov A.A. and Khanin K.M. On invariant measure for homeomorphisms of a circle with a point of
break. Funct. Anal. Appl., 1998, V.32, P.153-161.
6. Dzhalilov A.A. and Liousse I.Circle homeomorphisms with two break points. Nonlinearity, 2006, V.19,
P.1951-1968.
7. Dzhalilov A.A., Liousse I. and Mayer D. Singular measures of piecewise smooth circle homeomorphisms
with two break points. Discrete and continuous dynamical systems, 2009, V.24, P.381-403.
8. Dzhalilov A.A., Mayer D. and Safarov U.A. Piecewise-smooth circle homeomorphisms with several break
points. Izvestiya RAN: Ser. Mat., 2012, V.76, P.95-113.
9. Teplinsky A. A circle diffeomorphism with breaks that is absolutely continuously linearizable. Ergodic
Theory and Dynamical Systems, 2018, V.38, P.371–383.
Copyright (c) 2025 «ВЕСТНИК НУУз»

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.






.jpg)

2.png)





