SOL–GEL SPIN-COATING USULI ORQALI p-TIPLI Si(111) VA Si(100) SUBSTRATLARIDA O‘STIRILGAN βGa2O3 YUPQA PLYONKALARINING STRUKTURAVIY TAHLILI
##submission.downloads##
β-galliy oksid (β-Ga2O3) yupqa plyonkalari sol–gel aylantirish (spin-coating) usuli yordamida p-tipli Si(111) va Si(100) substratlarida muvaffaqiyatli sintez qilindi va keyinchalik issiqlik bilan pishirish (annealing) jarayoni o‘tkazildi. Rentgen difraksiyasi (XRD) tahlili ikkala substratda ham monoklinik β-Ga2O3 fazasining hosil bo‘lganligini tasdiqladi. Substrat yo‘nalishining kristallit o‘lchami, panjara deformatsiyasi va dislokatsiya zichligiga ta’siri tizimli ravishda o‘rganildi. Si(100) ustiga cho‘ktirib o‘stirilgan β-Ga2O3 plyonkasining kristallit o‘lchami (34,2 nm) Si(111) dagidan (31,7 nm) kattaroq bo‘lib, bunda deformatsiya va dislokatsiya zichligi kamaygani kuzatildi. Bu esa kristall sifatining yaxshilanganini ko‘rsatadi. Natijalar shuni ko‘rsatadiki, substrat yo‘nalishi β-Ga2O3 plyonkalarining tuzilma xossalarini belgilashda muhim omil hisoblanadi, bu esa ularning optoelektron va quvvatli qurilmalardagi samaradorligini oshirish uchun zarurdir.
1. S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, "A review of Ga₂O₃ materials, processing, and devices," Applied Physics Reviews, vol. 5, no. 1, p. 011301, 2018.
2. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Recent progress in Ga₂O₃ power devices," Semiconductor Science and Technology, vol. 31, no. 3, p. 034001, 2016.
3. R. Roy, V. G. Hill, and E. F. Osborn, "Polymorphism of Ga₂O₃ and the system Ga₂O₃–H₂O," Journal of the American Chemical Society, vol. 74, no. 3, pp. 719–722, 1952.
4. Z. Galazka, "Growth and properties of bulk β-Ga₂O₃ single crystals," Semiconductor Science and Technology, vol. 33, p. 113001, 2018.
5. D. Lin, et al., "Influence of annealing temperature on β-Ga₂O₃ thin films prepared by sol–gel spin coating," Applied Surface Science, vol. 528, p. 146825, 2020.
6. S. Kim, et al., "Microstructural and optical properties of sol–gel-derived Ga₂O₃ thin films," Thin Solid Films, vol. 693, p. 137676, 2020. 7. W. Li, et al., "Structural and optical evolution of β-Ga₂O₃ thin films deposited on silicon substrates," Ceramics International, vol. 48, pp. 16749–16757, 2022. 8. H. Zhao, et al., "Sol–gel synthesis of β-Ga₂O₃ films and their microstructural characterization," Journal of Sol-Gel Science and Technology, vol. 104, pp. 123–134, 2022. 9. N. U. Botirova, A. O. Arslanov, G. B. Eshonkulov, J. X. Murodov, R. Sh. Sharipova, J. Sh. Khudoykulov, and S. U. Yuldashev, "Effect of SiO₂ and post-annealed Ga₂O₃ buffer layers on Ga₂O₃ thin film growth and properties," Crystal Growth & Design, vol. 25, no. 18, pp. 7828–7833, 2025.
10. P. Scherrer, "Estimation of the size and internal structure of colloidal particles by means of X-rays," Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, vol. 2, pp. 96–100, 1918.
11. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed., Upper Saddle River, NJ: Prentice Hall, 2001. 12. C. Suryanarayana and M. G. Norton, "X-rays and diffraction," in X-Ray Diffraction, Boston, MA: Springer, 1998, pp. 1–30.
13. G. K. Williamson and W. H. Hall, "X-ray line broadening from filed aluminium and wolfram,"Acta Metallurgica, vol. 1, no. 1, pp. 22–31, 1953.
14. V. D. Mote, Y. Purushotham, and B. G. Dole, "Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles," Journal of Theoretical and Applied Physics, vol. 6, no. 1, p. 6, 2012.
Mulkiiyat (c) 2025 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..


.jpg)

.png)









