DISPERSE RED 1 BOʻYOGʻINING SOVUQ ATMOSFERIK PLAZMA YORDAMIDA PARCHALANISH MEXANIZMINI DFTB+ SIMULYATSIYALARI ASOSIDA TADQIQ QILISH
##submission.downloads##
Ushbu tadqiqotda sovuq atmosferik plazmasi (SAP) texnologiyasining chiqindi suvlarni tozalashdagi samaradorligi oʻrganildi. SAP organik ifloslantiruvchilarni parchalashda samarali va istiqbolli usul sifatida tanilgan. Tadqiqotda, SAP sharoitida Disperse red 1 boʻyoq ifloslantiruvchisining parchalanish mexanizmi, kislorod radikallari yordamida zichlik funktsional mustahkam bogʻlash (DFTB+) simulyatsiyalari yordamida oʻrganildi. Maqolada simulyatsiya metodologiyasi va parametrlarining batafsil tavsifi berilgan boʻlib, SAP taʼsirida boʻyoqning degradatsiya jarayoni tahlil qilingan. Tadqiqot natijalari, molekulyar darajadagi oʻzaro taʼsirlarni va jarayonning asosiy mexanizmlarini yoritishda muhim ahamiyat kasb etadi. Ushbu maqolada keltirilgan natijalar, chiqindi suvlarni tozalash uchun barqaror optimallashtirilgan tizimlarni ishlab chiqishda va SAP texnologiyasini parchalanish strategiyalarini rivojlantirishda DFTB+ simulyatsiyalarining samaradorligini koʻrsatadi.
1. Gururani, P., et al., Cold plasma technology: advanced and sustainable approach for wastewater treatment. Environmental Science and Pollution Research, 2021: p. 1-21.
2. Bashir, I., et al., Concerns and threats of contamination on aquatic ecosystems. Bioremediation and biotechnology: sustainable approaches to pollution degradation, 2020: p. 1-26.
3. Barjasteh, A., et al., Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. applied sciences, 2021. 11(8): p. 3372.
4. Deng, Y. and R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment. Current pollution reports, 2015. 1(3): p. 167-176.
5. Murugesan, P., J. Moses, and C. Anandharamakrishnan, Water decontamination using non-thermal plasma: Concepts, applications, and prospects. Journal of Environmental Chemical Engineering, 2020. 8(5): p. 104377. 6. Singh Saharan, B., A. Grewal, and P. Kumar, Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chinese Journal of Biology, 2014. 2014(1): p. 802984.
7. Diamond, J., J. Profili, and A. Hamdan, Characterization of various air plasma discharge modes in contact with water and their effect on the degradation of reactive dyes. Plasma Chemistry and Plasma Processing, 2019. 39: p. 1483-1498. 8. Aradi, B., B. Hourahine, and T. Frauenheim, DFTB+, a sparse matrix-based implementation of the DFTB method. The Journal of Physical Chemistry A, 2007. 111(26): p. 5678-5684.
9. Qian, H.-J., et al., Reactive molecular dynamics simulation of fullerene combustion synthesis: ReaxFF vs DFTB potentials. Journal of chemical theory and computation, 2011. 7(7): p. 2040-2048. 10. Gaus, M., A. Goez, and M. Elstner, Parametrization and benchmark of DFTB3 for organic molecules. Journal of Chemical Theory and Computation, 2013. 9(1): p. 338-354.
11. Kubillus, M., et al., Parameterization of the DFTB3 method for Br, Ca, Cl, F, I, K, and Na in organic and biological systems. Journal of chemical theory and computation, 2015. 11(1): p. 332-342. 12. Nabiyeva, N., et al., Preliminary study on degradation mechanisms of plasma-treated DR1 by atomistic simulations. Plasma Science and Technology, 2024.
13. da Silva Leite, L., et al., Monitoring ecotoxicity of disperse red 1 dye during photo-Fenton degradation. Chemosphere, 2016. 148: p. 511-517.
Mulkiiyat (c) 2025 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..






.jpg)

.png)





