STRESS VA OPTIMAL SHAROITDA NO‘XAT HOSILDORLIKNI TA’MINLOVCHI BELGILARINING O‘ZARO BOG’LIQLIGI
##submission.downloads##
Tadqiqotlarda geografik kelib chiqishi turlicha bo‘lgan bahorgi no‘xat namunalarining tabiiy sho‘rlangan va optimal muhitdagi hosildorlik belgilari, sho‘rlanishga chidamliligi va hosildorlik belgilarining o‘zaro bog’liqligi tahlil qilindi. Tahlil natijalariga ko‘ra, sho‘rli muhitda o‘sish va rivojlanishi yaxshi bo‘lgan, baland bo‘yli shoxlangan o‘simliklarda hosildorlikni ta’minlovchi belgilarning o‘zaro ijobiy bog‘liqligi hosildorlikning yuqori bo‘lishiga sabab bo‘ldi.
1. Ahmed, S. M., Alsamman, A. M., Mubarak, M. H., Badawy, M. A., Kord, M. A., Momtaz, O. A., & Hamwieh, A. (2019). Dowsing for salinity tolerance related genes in chickpea through genome wide association and in silico PCR analysis. bioRxiv, 519744 2. Jha, U. C., Bohra, A., Jha, R., & Parida, S. K. (2019). Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant cell reports, 38, 255-277. 3. FAO (2020) FAOSTAT, Food and Agriculture Organization of the United Nations Rome, Italy. Available at: http://faostat.fao.org 4. Negacz, K., Malek, Ž., de Vos, A., & Vellinga, P. (2022). Saline soils worldwide: Identifying the most promising areas for saline agriculture. Journal of arid environments, 203, 104775.
5. FAO, 2022. Global soil partnership. soil salinity [WWW Document]. https://www.fao. org/global-soil-partnership/areas-of-work/soil-salinity/en/ .
6. Zhao, C., Zhang, H., Song, C., Zhu, J.K., Shabala, S., 2020. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation. https://doi.org/10.1016/j. xinn.2020.100017. 7. Rana D.S., Dass A., Rajanna G.A. and Kaur R. 2016. Biotic and abiotic stress management in pulses. Indian J.Agron., 61: S238-S248. 8. Mishra, S., Bagal, D., Chowdhary, A. A., Mehrotra, S., Rai, G. K., Gandhi, S. G., ... & Srivastava, V. (2023). Signal crosstalk of phytomelatonin during salinity stress tolerance in plants. Plant Growth Regulation, 101(1), 35-51.
9. Guo, M., Wang, X.S., Guo, H.D., Bai, S.Y., Khan, A., Wang, X.M., Gao, Y.M., Li, J.S., 2022. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. Front Plant Sci. https://doi.org/10.3389/fpls.2022.949541.
10. Kiferle, C., Gonzali, S., Beltrami, S., Martinelli, M., Hora, K., Holwerda, H.T., Perata, P., 2022. Improvement in fruit yield and tolerance to salinity of tomato plants fertigated with micronutrient amounts of iodine. Sci Rep 12. https://doi.org/10.1038/s41598 022-18301-w 11. Al-aboud, N.M., & Okasha, S. (2025). Genetic analysis of salinity tolerance in chickpea (Cicer arietinum L.). SABRAO Journal of Breeding & Genetics, 57 (2). 12. Sugiyama, A. & Bekmirzaev, G., Ouddane, B., Beltrao, J., Khamidov, M., Fujii, Y., (2021). Effects of salinity on the macro-and micronutrient contents of a halophytic plant species (Portulaca oleracea L.). Land, 10(5), 481.
13. Fahad, S., Noor, M., Adnan, M., Khan, M. A., Rahman, I. U., Alam, M., et al. (2019).“Abiotic stress and rice grain quality,” in Advances in Rice Research for Abiotic Stress Tolerance, eds. M., Hasanuzzaman, M., Fujita, K., Nahar, and J. K., Biswas.(Amsterdam: Elsevier), 571–583. doi: 10.1016/B978-0-12-814332-2.00028-9
14. Dramalis, C., Katsantonis, D., and Koutroubas, S. D. (2021). Rice growth, assimilate translocation, and grain quality in response to salinity under Mediterranean conditions. AIMS Agric. Food 6, 255–272. doi: 10.3934/agrfood.2021017
15. Ismail, L.M.; Soliman, M.I.; Abd El-Aziz, M.H.; Abdel-Aziz, H.M.M. Impact of silica ions and nano silica on growth and productivity of pea plants under salinity stress. Plants 2022, 11, 494. 16. Hossain, H., Rahman, M. A., Alam, M. S., & Singh, R. K. (2015). Mapping of quantitative trait loci associated with reproductive‐stage salt tolerance in rice. Journal of Agronomy and crop science, 201(1), 17-31.
17. Khan, H.A., Siddique, K.H.M., Munir, R., Colmer, T.D. 2015. Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. Journal of Plant Physiology, 182: 1-12. 18. Arslan, A., Majid, G. A., Abdallah, K., Rameshwaran, P., Ragab, R., Singh, M., & Qadir, M. (2016). Evaluating the productivity potential of chickpea, lentil and faba bean under saline water irrigation systems. Irrigation and drainage, 65(1), 19-28.
19. Kotula, L., Khan, H. A., Quealy, J., Turner, N. C., Vadez, V., Siddique, K. H., ... & Colmer, T. D. (2015). Salt sensitivity in chickpea (C icer arietinum L.): ions in reproductive tissues and yield components in contrasting genotypes. Plant, cell & environment, 38(8), 1565-1577.
Mulkiiyat (c) 2025 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..






.jpg)

.png)





