MODELING THE EFFECT OF COLD ATMOSPHERIC PLASMA ON THE ANTIBIOTIC OFLOXACIN IN PHARMACEUTICAL WASTEWATER
The widespread use of antibiotics has led to an increase in the pollution of wastewater. Cold atmospheric plasma (CAP) has proven to be more effective than conventional methods in degrading antibiotics. However, the fundamental mechanisms of CAP’s effects are still not fully understood. This study investigates the degradation mechanisms of the antibiotic ofloxacin (OFL) using the reactive molecular dynamics method. Specifically, oxygen was chosen as the reactive species generated by CAP, and its interaction with OFL was studied at the atomic level. The results showed the formation of hydroxyl and epoxy groups in the methyl and methylene regions of OFL, as well as the release of water and carbon dioxide from the system.
1. G. Muteeb et al., Pharmaceuticals 16, 1615 (2023).
2. R. Gothwal et al., Clean – Soil, Air, Water 43, 479 (2015).
3. C. A. Fewson, Trends in Biotechnology 6, 148 (1988).
4. M. Santos et al., Journal of Hazardous Materials 175, 45 (2010).
5. A. Joss et al., Water Research 39, 3139 (2005).
6. A. R. Coates et al., British Journal of Pharmacology 163, 184 (2011).
7. T. Senasu et al., J Mater Sci: Mater Electron 31, 9685 (2020).
8. K. K. Sodhi et al., Journal of Water Process Engineering 43, 102218 (2021).
9. P. Huang et al., Science of The Total Environment 616–617, 1384 (2018).
10. X. Peng et al., Science of The Total Environment 371, 314 (2006).
11. A. Szymonik et al., Ecological Chemistry and Engineering S 24, 65 (2017).
12. H.-B. Lee et al., Journal of Chromatography A 1139, 45 (2007).
13. P. Verlicchi et al., Science of The Total Environment 429, 123 (2012).
14. N. Rahman et al., Journal of Environmental Management 318, 115525 (2022).
15. A. Joss et al., Water Research 40, 1686 (2006).
16. P. Pal et al., Separation & Purification Reviews 43, 89 (2014).
17. C. H. Neoh et al., Chemical Engineering Journal 283, 582 (2016).
18. E. Wielogorska et al., Antibiotics 12, 1115 (2023).
19. P. T. T. Nguyen et al., Journal of Chemistry 2021, e9981738 (2021).
20. C. Sarangapani et al., Sci Rep 9, 3955 (2019).
21. M. Yusupov et al., New J. Phys. 14, 093043 (2012).
22. M. Yusupov et al., J. Phys. Chem. C 117, 5993 (2013).
23. M. Yusupov et al., J. Phys. D: Appl. Phys. 47, 025205 (2014).
24. M. Yusupov et al., Plasma Processes and Polymers 12, 162 (2015).
25. M. Yusupov et al., Sci Rep 7, 5761 (2017).
26. M. Yusupov et al., Redox Biology 43, 101968 (2021).
27. M. Yusupov et al., Plasma Processes and Polymers 20, 2200137 (2023).
28. M. Elstner et al., Phys. Rev. B 58, 7260 (1998).
29. M. Gaus et al., J. Chem. Theory Comput. 9, 338 (2013).
30. M. Gaus et al., J. Chem. Theory Comput. 10, 1518 (2014).
31. M. Kubillus et al., J. Chem. Theory Comput. 11, 332 (2015).
32. H. J. C. Berendsen et al., Journal of Chemical Physics 81, 3684 (1984).
33. B. Aradi et al., J. Phys. Chem. A 111, 5678 (2007).
34. B. Hourahine et al., J. Chem. Phys. 152, 124101 (2020).
Copyright (c) 2025 ACTA NUUz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





