МОДЕЛИРОВАНИЕ ВЛИЯНИЯ ХОЛОДНОЙ АТМОСФЕРНОЙ ПЛАЗМЫ НА АНТИБИОТИК ОФЛОКСАЦИН В ФАРМАЦЕВТИЧЕСКИХ СТОЧНЫХ ВОДАХ
Широкое использование антибиотиков привело к увеличению загрязнения сточных вод. Холодная атмосферная плазма (ХАП) оказалась более эффективной для разложения антибиотиков по сравнению с традиционными методами. Однако основные механизмы действия ХАП до сих пор не полностью изучены. В данном исследовании изучаются механизмы разложения антибиотика офлоксацина (ОФЛ) с использованием метода реакционной молекулярной динамики. В частности, кислород был выбран в качестве реактивного вещества, образуемого ХАП, и его взаимодействие с ОФЛ было исследовано на атомарном уровне. Результаты показали образование гидроксильных и эпоксидных групп в метильных и метиленовых участках ОФЛ, а также выделение воды и углекислого газа из системы.
1. G. Muteeb et al., Pharmaceuticals 16, 1615 (2023).
2. R. Gothwal et al., Clean – Soil, Air, Water 43, 479 (2015).
3. C. A. Fewson, Trends in Biotechnology 6, 148 (1988).
4. M. Santos et al., Journal of Hazardous Materials 175, 45 (2010).
5. A. Joss et al., Water Research 39, 3139 (2005).
6. A. R. Coates et al., British Journal of Pharmacology 163, 184 (2011).
7. T. Senasu et al., J Mater Sci: Mater Electron 31, 9685 (2020).
8. K. K. Sodhi et al., Journal of Water Process Engineering 43, 102218 (2021).
9. P. Huang et al., Science of The Total Environment 616–617, 1384 (2018).
10. X. Peng et al., Science of The Total Environment 371, 314 (2006).
11. A. Szymonik et al., Ecological Chemistry and Engineering S 24, 65 (2017).
12. H.-B. Lee et al., Journal of Chromatography A 1139, 45 (2007).
13. P. Verlicchi et al., Science of The Total Environment 429, 123 (2012).
14. N. Rahman et al., Journal of Environmental Management 318, 115525 (2022).
15. A. Joss et al., Water Research 40, 1686 (2006).
16. P. Pal et al., Separation & Purification Reviews 43, 89 (2014).
17. C. H. Neoh et al., Chemical Engineering Journal 283, 582 (2016).
18. E. Wielogorska et al., Antibiotics 12, 1115 (2023).
19. P. T. T. Nguyen et al., Journal of Chemistry 2021, e9981738 (2021).
20. C. Sarangapani et al., Sci Rep 9, 3955 (2019).
21. M. Yusupov et al., New J. Phys. 14, 093043 (2012).
22. M. Yusupov et al., J. Phys. Chem. C 117, 5993 (2013).
23. M. Yusupov et al., J. Phys. D: Appl. Phys. 47, 025205 (2014).
24. M. Yusupov et al., Plasma Processes and Polymers 12, 162 (2015).
25. M. Yusupov et al., Sci Rep 7, 5761 (2017).
26. M. Yusupov et al., Redox Biology 43, 101968 (2021).
27. M. Yusupov et al., Plasma Processes and Polymers 20, 2200137 (2023).
28. M. Elstner et al., Phys. Rev. B 58, 7260 (1998).
29. M. Gaus et al., J. Chem. Theory Comput. 9, 338 (2013).
30. M. Gaus et al., J. Chem. Theory Comput. 10, 1518 (2014).
31. M. Kubillus et al., J. Chem. Theory Comput. 11, 332 (2015).
32. H. J. C. Berendsen et al., Journal of Chemical Physics 81, 3684 (1984).
33. B. Aradi et al., J. Phys. Chem. A 111, 5678 (2007).
34. B. Hourahine et al., J. Chem. Phys. 152, 124101 (2020).
Copyright (c) 2025 Вестник НУУз

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.






.jpg)

2.png)





