ELECTRICAL PROPERTIES AND ELECTRONIC STRUCTURE OF ZN DIFFUSION COMPENSATED AND STRONGLY COMPENSATED SILICON
This scientific article presents the synthesis of heavily compensated p(n)-Si<P, Zn> substrates with various conductivity types and a wide range of specific electrical resistances at room temperature by diffusing Zn into the semiconductor substrate to form additional levels in the energy diagram of MOS structures. The aim is to enhance the sensitivity of the substrate to external influences. The experimental results provide values for mobility, charge carrier concentration, and specific resistance, based on which certain additives were introduced into the energy diagram of the silicon substrate, considering the experimental data
1. N.V. Volkov, A.S. Tarasov, D.A. Smolyakov, S.N. Varnakov, and S.G. Ovchinnikov, “Bias-voltage-controlled ac and dc magnetotransport phenomena in hybrid structures,” J. Magn. Magn. Mater., vol. 383, pp. 69–72, Jun. 2015, doi: 10.1016/j.jmmm.2014.11.014.
2. N.V. Volkov, A.S. Tarasov, D.A. Smolyakov, A.O. Gustaitsev, V.V. Balashev, and V.V. Korobtsov, “The bias-controlled giant magnetoimpedance effect caused by the interface states in a metal-insulator-semiconductor structure with the Schottky barrier,” Appl. Phys. Lett., vol. 104, no. 22, p. 222406, Jun. 2014, doi: 10.1063/1.4881715. 3. Z. Liang et al., “A review of doped metal oxide semiconductors in the stability of thin film transistors,” J. Alloys Compd., vol. 1010, p. 177434, Jan. 2025, doi:10.1016/j.jallcom.2024.177434.
4. T.J. Theka, H.C. Swart, and D.E. Motaung, “Recent trends, advances, and challenges in MOF-derived metal oxide semiconductor-based sensors for BTEX detection: A review,” Inorg. Chem. Commun., vol. 168, p. 112884, Oct. 2024, doi: 10.1016/j.inoche.2024.112884.
5. K.С. Аюпов, М.К. Бахадирханов, Н.Ф. Зикриллаев, Х.М. Илиев “Физические явления в кремнии в крайне неравновесном состоянии”. Lambert Academic Publishing, Group 17 Meldrum Street. Beau Bassin 71504. 2019
6. C.S. Fuller and F.J. Morin, “Diffusion and Electrical Behavior of Zinc in Silicon,” Phys. Rev., vol. 105, no. 2, pp. 379–384, Jan. 1957, doi: 10.1103/PhysRev.105.379.
7. R.O. Carlson, “Double-Acceptor Behavior of Zinc in Silicon,” Phys. Rev., vol. 108, no. 6, pp. 1390–1393, Dec. 1957, doi: 10.1103/PhysRev.108.1390.
8. М.К. Бахадырханов, Б.И. Болтакс, Т.Дж. Джафаров, Г.С. Куликов, “Оптическое поглощения в кремнии с примесями Co и Zn.” ФТТ., vol. Т. 11. В. 12., pp. 36–42.
9. J.M. Herman III and C.T. Sah, “Thermal ionization rates and energies of holes at the double acceptor zinc centers in silicon,” Phys. Status Solidi A, vol. 14, no. 2, pp. 405–415, 1972, doi: 10.1002/pssa.2210140203.
10. В.М Арутюнян “Физические свойства и функциональные возможности для кремниевых структур компенсированным цинком,” Микроэлектроника., vol. Т.
11. В. 6., pp. 45–54, 1982. 11. “М.К. Бахадырханов, Н.Ф. Зикриллаев, Э.У. Арзикулов, “Влияние упругости паров диффузанта на концентрацию электроактивных атомов и степень компенсации образцов Si{Zn}”, Письма в ЖТФ, 17:12 (1991), 1–4.
12. Е.В. Кучис, “Гальваномагнитные. эффекты и методы. их исследования,” Радио И Связь, vol. . – 264 с: pp. 140-147;., Москва: Редакция литературы по электронике, 1990
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





