THE CHARACTERISTICS OF THE FREQUENCY OF HLA-DRB POLYMORPHISM IN THE UZBEK POPULATION OF SAMARQAND REGION
The Samarkand region, as a center of historical ethnic intermixing, represents a unique area for genetic research. This study examined the distribution characteristics of HLA-DRB1, DRB3, DRB4, and DRB5 gene polymorphisms in the Uzbek population of the region. According to genotyping results, the HLA-DRB1*0101 allele was identified with the highest frequency (22.3%), standing out as the most prevalent form in the area. The presence of DRB3, DRB4, and DRB5 alleles plays an important role in shaping immune responses in transplantation, autoimmune, and infectious diseases. The findings not only highlight the genetic diversity of the region's population but also provide valuable information for practical use in medicine and clinical immunogenetics
1. Asqarov A. O'zbek xalqi etnogenezi va etnik tarixi. Toshkent. Universitet nashriyoti. 2007. 138-bet
2. Asqarov A. O’zbek xalqining kelib chiqish tarixi. Toshkent. O’zbekiston nashriyoti. 2015. 242-bet
3. Andersson G, Larhammar D, Widmark E, Servenius B, Peterson PA, Rask L. Class II genes of the human major histocompatibility complex. Organization and evolutionary relationship of the DR beta genes. J Biol Chem. 1987;262:8748–8758. [PubMed] [Google Scholar]
4. Bergstrom TF, Josefsson A, Erlich HA, Gyllensten U. Recent origin of HLA-DRB1 alleles and implications for human evolution. Nat Genet. 1998;18:237–242. doi: 10.1038/ng0398-237. [DOI] [PubMed] [Google Scholar]
5. Erlich HA, Bergstrom TF, Stoneking M, Gyllensten U. HLA sequence polymorphism and the origin of humans. Science. 1996;274:1552b–1554b. doi: 10.1126/science.274.5292.1552b. [DOI] [PubMed] [Google Scholar]
6. Klein J, Sato A, Nikolaidis N. MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet. 2007;41:281–304. doi: 10.1146/annurev.genet.41.110306.130137. [DOI] [PubMed] [Google Scholar]
7. Trowsdale J., Knight J.C. Major histocompatibility complex genomics and human disease. Annual Review of Genomics and Human Genetics. 2013;14:301–323. doi:10.1146/annurev-genom-091212-153455.
8. Shiina T., Hosomichi K., Inoko H., Kulski J.K. The HLA genomic loci map: expression, interaction, diversity and disease. Journal of Human Genetics. 2009;54(1):15–39. doi:10.1038/jhg.2008.5.
9. Sanchez-Mazas A., et al. HLA molecular variation and the mapping of human genetic diversity. Tissue Antigens. 2011;77(6):515–523. doi:10.1111/j.1399-0039.2011.01681.x.
10. Robinson J., Halliwell J.A., McWilliam H., Lopez R., Parham P., Marsh S.G.E. The IMGT/HLA database. Nucleic Acids Research. 2013;41(D1):D1222–D1227. doi:10.1093/nar/gks1149.
11. Alper C.A., Awdeh Z.L., Yunis E.J., et al. Genetic differentiation of HLA class II alleles across populations: implications for transplantation. Human Immunology. 2001;62(9):960–970.
12. Petersdorf E.W. The major histocompatibility complex: a model for understanding graft-versus-host disease. Blood. 2013;122(11):1863–1872. doi:10.1182/blood-2013-03-407106.
13. Cao K., Moormann A.M., Lyke K.E., et al. Differentiation between African populations is evidenced by HLA class I allele distribution. Tissue Antigens. 2004;63(4):293–325.
14. Goyette P., Boucher G., Mallon D., et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases. Nature Genetics. 2015;47:172–179. doi:10.1038/ng.3176.
15. Gonzalez-Galarza F.F., et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Research. 2020;48(D1):D783–D788. doi:10.1093/nar/gkz1029.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





