MICROBIAL BIOSYNTHESIS OF L-METHIONINE: ACHIEVEMENTS AND CHALLENGES FROM METABOLIC ENGINEERING TO INDUSTRIAL SCALE
This article discusses the microbial synthesis of L-methionine, including its biosynthetic pathways, regulatory mechanisms, production challenges, and modern engineering solutions to overcome these barriers. Particular emphasis is placed on genetic modifications in model organisms such as Corynebacterium glutamicum and Escherichia coli, resistance to methionine analogs, and the implementation of systems metabolic engineering. Strategies for improving fermentation efficiency through the regulation of homoserine flow, detoxification of intermediate metabolites, and optimization of methionine transport systems are also examined.
1. Augustus, A.M., Reardon, P.N., Spicer, L.D., 2009. MetJ repressor interactions with DNA probed by in-cell NMR. Proc. Natl. Acad. Sci. U. S. A. 106 (13), 5065–5069.
2. Bastard, K., Perret, A., Mariage, A., Bessonnet, T., Pinet-Turpault, A., Petit, J.L., Darii, E., Bazire, P., Vergne-Vaxelaire, C., Brewee, C., Debard, A., Pellouin, V., Besnard-Gonnet, M., Artiguenave, F., Medigue, C., Vallenet, D., Danchin, A., Zaparucha, A., Weissenbach, J., Salanoubat, M., De Berardinis, V., 2017. Parallel evolution of nonhomologous isofunctional enzymes in methionine biosynthesis. Nat. Chem. Biol. 13 (8), 858.
3. Becker, J., Zelder, O., Hafner, S., Schroder, H., Wittmann, C., 2011. From zero to hero–design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13 (2), 159–168.
4. Bourhy, P., Martel, A., Margarita, D., Girons, I.S., Belfaiza, J., 1997. Homoserine Oacetyltransferase, involved in the Leptospira meyeri methionine biosynthetic pathway, is not feedback inhibited. J. Bacteriol. 179 (13), 4396–4398.
5. Cai, M., Zhao, Z., Li, X., Xu, Y., Xu, M., Rao, Z., 2022. Development of a nonauxotrophic L-homoserine hyperproducer in Escherichia coli by systems metabolic engineering. Metab. Eng. 73, 270–279.
6. Choi, K.R., Jang, W.D., Yang, D., Cho, J.S., Park, D., Lee, S.Y., 2019. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 37 (8), 817–837.
7. Ferla, M.P., Patrick, W.M., 2014. Bacterial methionine biosynthesis. Microbiology (Reading) 160 (Pt 8), 1571–1584.
8. Figge, R.M., 2007. Methionine biosynthesis in Escherichia coli and Corynebacterium glutamicum. In: Wendisch, V.F. (Ed.), Amino Acid Biosynthesis – Pathways, Regulation and Metabolic Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 163–193.
9. Fritsch, P.S., Urbanowski, M.L., Stauffer, G.V., 2000. Role of the RNA polymerase alpha subunits in MetR-dependent activation of metE and metH: important residues in the C-terminal domain and orientation requirements within RNA polymerase. J. Bacteriol. 182 (19), 5539–5550.
10. He, Y.Y., Garvie, C.W., Elworthy, S., Manfield, I.W., McNally, T., Lawrenson, I.D., Phillips, S.E., Stockley, P.G., 2002. Structural and functional studies of an intermediate on the pathway to operator binding by Escherichia coli MetJ. J. Mol. Biol. 320 (1), 39–53.
11. Hong, K.K., Kim, J.H., Yoon, J.H., Park, H.M., Choi, S.J., Song, G.H., Lee, J.C., Yang, Y.L., Shin, H.K., Kim, J.N., Cho, K.H., Lee, J.H., 2014. O-succinyl-L-homoserine-based C4- chemical production: succinic acid, homoserine lactone, gamma-butyrolactone, gamma-butyrolactone derivatives, and 1,4-butanediol. J. Ind. Microbiol. Biotechnol. 41 (10), 1517–1524.
12. Huang, J.F., Shen, Z.Y., Mao, Q.L., Zhang, X.M., Zhang, B., Wu, J.S., Liu, Z.Q., Zheng, Y. G., 2018a. Systematic analysis of bottlenecks in a multibranched and multilevel regulated pathway: the molecular fundamentals of l-methionine biosynthesis in Escherichia coli. ACS Synth. Biol. 7 (11), 2577–2589.
13. Kase, H., & Nakayama, K. (1975). L-Methionine production by methionine analog-resistant mutants of Corynebacterium glutamicum. Agricultural and Biological Chemistry, 39(1), 153-160.
14. Ko, Y.S., Kim, J.W., Lee, J.A., Han, T., Kim, G.B., Park, J.E., Lee, S.Y., 2020. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem. Soc. Rev. 49 (14), 4615–4636.
15. Koutmos, M., Datta, S., Pattridge, K.A., Smith, J.L., Matthews, R.G., 2009. Insights into the reactivation of cobalamin-dependent methionine synthase. Proc. Natl. Acad. Sci. U. S. A. 106 (44), 18527–18532.
16. Kumar, D., Gomes, J., 2005. Methionine production by fermentation. Biotechnol. Adv. 23 (1), 41–61.
17. Li, H., Wang, B.S., Li, Y.R., Zhang, L., Ding, Z.Y., Gu, Z.H., Shi, G.Y., 2017a. Metabolic engineering of Escherichia coli W3110 for the production of L-methionine. J. Ind. Microbiol. Biotechnol. 44 (1), 75–88.
18. Li, H., Wang, B.S., Zhu, L.H., Cheng, S., Li, Y.R., Zhang, L., Ding, Z.Y., Gu, Z.H., Shi, G.Y., 2016a. Metabolic engineering of Escherichia coli W3110 for L-homoserine production. Process Biochem. 51 (12), 1973–1983.
19. Li, N., Li, L., Yu, S., Zhou, J., 2023. Dual-channel glycolysis balances cofactor supply for l-homoserine biosynthesis in Corynebacterium glutamicum. Bioresour. Technol. 369, 128473.
20. Li, N., Shan, X., Zhou, J., Yu, S., 2022a. Identification of key genes through the constructed CRISPR-dcas9 to facilitate the efficient production of Oacetylhomoserine in Corynebacterium glutamicum. Front. Bioeng. Biotechnol. 10, 978686.
21. Li, N., Wang, M., Yu, S., Zhou, J., 2021. Optimization of CRISPR-Cas9 through promoter replacement and efficient production of L-homoserine in Corynebacterium glutamicum. Biotechnol. J. 16 (8), e2100093.
22. Li, N., Xu, S., Du, G., Chen, J., Zhou, J., 2020. Efficient production of L-homoserine in Corynebacterium glutamicum ATCC 13032 by redistribution of metabolic flux. Biochem. Eng. J. 161.
23. Li, N., Zeng, W., Zhou, J., Xu, S., 2022b. O-acetyl-L-homoserine production enhanced by pathway strengthening and acetate supplementation in Corynebacterium glutamicum. Biotechnol. Biofuels Bioprod. 15 (1), 27.
24. Li, Y.J., Wei, H.B., Wang, T., Xu, Q.Y., Zhang, C.L., Fan, X.G., Ma, Q., Chen, N., Xie, X.X., 2017b. Current status on metabolic engineering for the production of L-aspartate family amino acids and derivatives. Bioresour. Technol. 245, 1588–1602.
25. Liu, M., Lou, J.L., Gu, J.L., Lyu, X.M., Wang, F.Q., Wei, D.Z., 2020a. Increasing Lhomoserine production in Escherichia coli by engineering the central metabolic pathways. J. Biotechnol. 314, 1–7.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





