INVESTIGATION OF POLYMER SOLAR CELL EFFICIENCY THROUGH THE ADDITION OF A POLYMER SOLUTION TO THE PM6 DONOR
In this study, a liquid-crystalline tetrafluorophenyl azide (PFFA) polymer was incorporated as an additive into the PM6:L8-BO donor/acceptor blend, specifically into the donor component PM6, achieving enhanced morphology and higher efficiency. This modification broadened the optical absorption spectrum of the active layer, increasing the probability of photon absorption and generating more photoinduced charge carriers (electrons and holes). The suppression of interfacial recombination processes and the improvement of charge carrier mobility led to an increase in the fill factor (FF) up to 79.4%. As a result of the improved photovoltaic parameters (Jsc, Voc, FF) of the polymer solar cells (PSCs), the power conversion efficiency (PCE) increased from 17.7% to 18.2%.
1. M. Nur-E-Alam, M.S. Islam, T. Abedin, M.A. Islam, B.K. Yap, T.S. Kiong, Current Opinion in Colloid Interface Science, (2025) 101895.
2. P.V. Kamat, in, ACS Publications, 2025, pp. 896-897.
3. L.A. Castriotta, F. De Rossi, M. Bonomo, ACS Energy Letters, 10 (2025) 283.
4. H. Zhu, B. Shao, Z. Shen, S. You, J. Yin, N. Wehbe, L. Wang, X. Song, M. Abulikemu, A. Basaheeh, Nature Photonics, 19 (2025) 28-35.
5. G. G. Njema, J.K. Kibet, S.M. Ngari, Next Energy, 6 (2025) 100182.
6. J. Chen, X. Wang, T. Wang, J. Li, H.Y. Chia, H. Liang, S. Xi, S. Liu, X. Guo, R. Guo, Nature Energy, 10 (2025) 181-190. 7. X. Sun, X. Ding, F. Wang, et al., “Binary Organic Solar Cells With >19.6% Efficiency” ACS Energy Letters 9 (2024): 4209– 4217.
8. Q. Fan, Q. Xiao, H. Zhang, et al., “Highly Efficient and Stable ITO-Free Bulk Heterojunction,” Advanced Materials 36, no. 3 (2024): 2307920.
9. J. W. Lee, H. G. Lee, E. S. Oh, et al., “Rigid- and Soft-Block-Copolymerized Conjugated Polymers” Joule 8, no. 1 (2024): 204–223.
10. L. Tian, C. Liu, and F. Huang, “Recent Progress in Side Chain Engi-neering of Y-Series Non-Fullerene Molecule and Polymer Acceptors,” 34, no. 31 (2022).
11. J. Yao, Q. Chen, C. Zhang, Z. Zhang, and Y. Li, “Perylene-Diimide-Based Cathode Interlayer Materials for High Performance Organic Solar Cells,” SusMat 2, no. 3 (2022): 243–263.
12. S. Chu and A. Majumdar, “Opportunities and Challenges for a Sustainable Energy Future,” Nature 488, no. 7411 (2012): 294–303.
13. Z. Chen, J. Zhu, D. Yang, et al., “Isomerization Strategy on a Non-Fullerene” Energy & Environmental Science 16, no. 7 (2023): 3119–3127.
14. Q. Zhu, J. Xue, H. Zhao, et al., “Highly Efficient Organic Solar Cells With Acceptor Content,” Journal of Materials Chemistry A 10, no. 15 (2022): 8293–8302.
15. D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, and Z. Bao, “Stretchable Organic Solar Cells,” Advanced Materials 15, no. 15 (2011): 1771–1775.
16. Z. Wang, D. Zhang, M. Xu, et al., “Intrinsically Stretchable Organic Solar Cells With Simultaneously” Small 18, no. 26 (2022): 2201589.
17. J.Qiu,Q.Zhou, M.Yu,etal.,“ModulatingCsPbl,” SusMat 3, no. 6 (2023): 894
18. Z. Peng, K. Xian, Y. Cui, et al., “Thermoplastic Elastomer Tunes Phase Structure” Advanced Materials 33, no. 49 (2021): 2106732.
19. J. Wang, C. Han, J. Han, et al., “Synergetic Strategy for Highly Efficient and Super Flexible Thick-Film Organic Solar Cells,” Advanced Energy Materials 12, no. 31 (2022): 2201614.
20. S. Seo, J.W. Lee, D. J. Kim, et al., “Poly (dimethylsiloxane)-Block-PM6 PolymerDonors for High-Performance and Mechanically Robust Polymer Solar Cells,” Advanced Materials 35, no. 24 (2023): 2300230.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





