TAR MAHSULOTASOSIDA NEFT POLIMERQATRON OLISHKINETIKASI VA JARAYON SAMARADORLIGINI OPTIMALLASHTIRISH
This study proposes an innovative approach for optimizing the resin separation process from TAR products generated in gas-chemical complexes by accurately measuring and gradually supplying oxygen during pyrolysis. Pyrolysis in the presence of oxygen was analyzed kinetically to convert raw materials into economically and environmentally safe products. Based on the Arrhenius equation, the activation energy (Ea) and reaction rate constant (k) were calculated, allowing for the evaluation of energy requirements and process efficiency.
1. Liu, Y., Hodek, W., & van Heek, K. H. Characterization of tar, char and gas from pyrolysis of coal asphaltenes. Fuel, 77(9), https://doi.org/10.1016/S0016-2361(97)00287-1 2. Mosonik, M. C., Bakar, M. Z. A., Hassan, M. A., & Choong, T. S. Y. (2021). In situ observation of the evolution of polyaromatic tar precursors in packed‑bed biomass pyrolysis. https://doi.org/10.1039/D1RE00032B 3. Park, S. W., Kim, J. H., Lee, D. H., & Hwang, J. H. (2018). Effects of Oxygen Enrichment in Air Oxidants on Biomass Gasification Efficiency and the Reduction of Tar Emissions. Energies, 11(10), 2664. https://doi.org/10.3390/en11102664 4. Platonov, V. V., Malkov, A. V., & Blokhin, V. M. (2002). Pyrolysis Kinetics of Phenols from Lignite Semicoking Tar. Russian Journal of Applied Chemistry, 75(8), 1312–1317. https://doi.org/10.1023/A:1022295027623 5. Zhao, X., Liu, L., Song, X., & Zhou, J. (2015). Experimental Investigation of Tar Reduction Properties by Coupling Oxidative Pyrolysis and Partial Oxidation in a Continuous Reactor for Biomass Gasification. Energy Technology, 3(6), 592–600. https://doi.org/10.1002/ente.201500159 6. Kong, J., Zhang, Y., & Wang, J. (2014). Study on the formation of phenols during coal flash pyrolysis using pyrolysis‑GC/MS. Fuel Processing Technology, 126, 337–344. https://doi.org/10.1016/j.fuproc.2014.06.004 7. Altynbaeva, D., Astafev, A. V., & Tabakaev, R. B. (2018). Kinetics of biomass low‑temperature pyrolysis by Coats–Redfern method. MATEC Web of Conferences, 194, 01058. https://doi.org/10.1051/matecconf/201819401058
8. Dinh, Q. V., Nguyen, T. T., & Do, N. H. (2017). The effect of combustion temperature to low‑tar gas production using oxygen‑enriched air. Vietnam Journal of Chemistry, 55(5), 641–646. https://doi.org/10.15625/2525-2321.2017-00492 9. He, W., Liu, Q., Shi, L., Liu, Z., Ci, D., Lievens, C., & Guo, X. (2014). Regulating phenol tar in pyrolysis of lignocellulosic biomass: Product characteristics and conversion mechanisms. Bioresource Technology, 156, 372–375. https://doi.org/10.1016/j.biortech.2014.01.063 10. Effendi, A., Gerhauser, H., & Bridgwater, A. V. (2008). Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable & Sustainable Energy Reviews, 12(8), 2092–2116. https://doi.org/10.1016/j.rser.2007.07.008 11. Adhikari, S., Auad, M., Via, B., Shah, A., & Patil, V. (2020). Production of novolac resin after partial substitution of phenol from bio‑oil. Transactions of the ASABE, 63(3), 901–912. https://doi.org/10.13031/trans.14041 12. Pakdel, H., Roy, C., & Amen-Chen, C. (1997). Phenolic compounds from vacuum pyrolysis of wood wastes. Canadian Journal of Chemical Engineering, 75(1), 121–126. https://doi.org/10.1002/cjce.5450750105 13. Zhang, R., Wang, H., You, Z., Jiang, X., & Yang, X. (2018). Thermal storage stability of bio‑oil modified asphalt. Journal of Materials in Civil Engineering, 30(4), 04018054. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002167 14. Zhang, R., Wang, H., You, Z., Jiang, X., & Yang, X. (2017). Optimization of bio‑asphalt using bio‑oil and distilled water. Journal of Cleaner Production, 165, 281–289. https://doi.org/10.1016/j.jclepro.2017.07.020
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





