ABELIAN EXTENSIONS OF SOLVABLE LEIBNIZ ALGEBRA WITH NATURALLY GRADED FILIFORM NILRADICAL OF MAXIMAL CODIMENSION
Using the method of central extensions, we can construct only those Leibniz algebras with nontrivial
centers. Therefore, to identify Leibniz algebras with trivial centers, we apply the method of abelian
extensions. In this paper, we provide a classification of one-dimensional abelian extensions of
solvable Leibniz algebras whose nilradical is a naturally graded filiform Leibniz algebra of maximal
codimension. We give explicit descriptions of these extensions and determine their structures up to
isomorphism.
1. Ayupov Sh. A., Omirov B. A., Rakhimov I. S. Leibniz Algebras: Structure and Classification. Taylor and
Francis Group Publisher, 2019, ISBN 0367354810, P. 333.
2. Bloh A. A generalization of the concept of a Lie algebra. Sov. Math. Dok., 1965, V. 165(3), P. 1450–1452.
3. Casas J. M., Faro E., Vieites A. M. Abelian extensions of Leibniz algebras. Communications in Algebra,
1999, V. 27(6), P. 2833–2846.
4. Camacho L. M., Navarro R. M., Omirov B. A. Central extensions of some solvable Leibniz superalgebras.
Linear Algebra and its Applications, 2023, V. 656(1), P. 63–91.
5. Karimjonov I. A. Classification of Leibniz algebras with a given nilradical and with some corresponding
Lie algebras. PhD thesis, Santiago de Compostella, 2017.
6. Khudoyberdiyev A. Kh., Sheraliyeva S. A. Abelian extensions of five-dimensional solvable Leibniz
algebras. arXiv:2506.23528.
7. Ladra M., Masutova K. K., Omirov B. A. Solvable Leibniz algebra with non-Lie and non-split naturally
graded filiform nilradical and its rigidity. Linear Algebra Appl, 2016, V. 507, P. 513–517.
8. Loday J.-L. Une version non commutative des alg` ebres de Lie: les alg` ebres de Leibniz. Enseign. Math.,
1993, V. 39(3-4), P. 269–293.
9. Liu J., Sheng Y., Wang Q. On non-abelian extension of Leibniz algebras. Communications in Algebra,
2018, V. 46(2), P. 574–587.
10. Rakhimov I. S., Langari S. L., Langari M. B. On central extensions of null-filiform Leibniz algebras. J.
Algebra, 2009, V. 3(6), P. 271–280.
11. Sheraliyeva S. Extension of some solvable Leibniz algebra. Bulletin of the Institute of Mathematics, 2023,
V. 6(4), P. 78–89.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





