ABELIAN EXTENSIONS OF SOLVABLE LEIBNIZ ALGEBRA WITH NATURALLY GRADED FILIFORM NILRADICAL OF MAXIMAL CODIMENSION
##submission.downloads##
Markaziy kengaytma metodidan foydalanib, markazi noldan farqli bo’lgan algebralarni qurishimiz
mumkin. Shuning uchun, markazi trivial bo’lgan Leybnits algebralarini aniqlash uchun Abel
kengaytmalar metodidan foydalanamiz. Ushbu ishda nilradikali maksimal ko-o’lchamli tabiiy usulda
gradiurlangan filiform Leybnits algebrasi bo’lgan yechiluvchi Leybnits algebralarining bir o’lchovli
Abel kengaytmalarining klassifikatsiyasi keltirilgan. Bu kengaytmalar aniq ifodalangan va ularning
strukturalari izomorfizm aniqligini tasniflangan.
1. Ayupov Sh. A., Omirov B. A., Rakhimov I. S. Leibniz Algebras: Structure and Classification. Taylor and
Francis Group Publisher, 2019, ISBN 0367354810, P. 333.
2. Bloh A. A generalization of the concept of a Lie algebra. Sov. Math. Dok., 1965, V. 165(3), P. 1450–1452.
3. Casas J. M., Faro E., Vieites A. M. Abelian extensions of Leibniz algebras. Communications in Algebra,
1999, V. 27(6), P. 2833–2846.
4. Camacho L. M., Navarro R. M., Omirov B. A. Central extensions of some solvable Leibniz superalgebras.
Linear Algebra and its Applications, 2023, V. 656(1), P. 63–91.
5. Karimjonov I. A. Classification of Leibniz algebras with a given nilradical and with some corresponding
Lie algebras. PhD thesis, Santiago de Compostella, 2017.
6. Khudoyberdiyev A. Kh., Sheraliyeva S. A. Abelian extensions of five-dimensional solvable Leibniz
algebras. arXiv:2506.23528.
7. Ladra M., Masutova K. K., Omirov B. A. Solvable Leibniz algebra with non-Lie and non-split naturally
graded filiform nilradical and its rigidity. Linear Algebra Appl, 2016, V. 507, P. 513–517.
8. Loday J.-L. Une version non commutative des alg` ebres de Lie: les alg` ebres de Leibniz. Enseign. Math.,
1993, V. 39(3-4), P. 269–293.
9. Liu J., Sheng Y., Wang Q. On non-abelian extension of Leibniz algebras. Communications in Algebra,
2018, V. 46(2), P. 574–587.
10. Rakhimov I. S., Langari S. L., Langari M. B. On central extensions of null-filiform Leibniz algebras. J.
Algebra, 2009, V. 3(6), P. 271–280.
11. Sheraliyeva S. Extension of some solvable Leibniz algebra. Bulletin of the Institute of Mathematics, 2023,
V. 6(4), P. 78–89.
Mulkiiyat (c) 2025 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..






.jpg)

.png)





