ОЦЕНКА ГЕССИАНОВ ОГРАНИЧЕННЫХ m-ВЫПУКЛЫХ ФУНКЦИЙ
Respectfully dedicated to the 80th anniversary of Shavkat Arifzhanovich Alimov and the 70th
anniversary of Ravshan Radzhabovich Ashurov in recognition of their outstanding contributions
to science and education.
A novel approach to studying m-convex (m − cv) functions has been developed by mathematicians
from the Khorezm branch of the V.I. Romanovskiy Institute of Mathematics of the Academy of
Sciences of Uzbekistan and the National University of Uzbekistan named after Mirzo Ulugbek. This
research method is based on the connection between m-convex functions and m-subharmonic (sh m )
functions. Through this established connection, it was shown that H k (u), k = 1,2,...,n − m +
1, can be defined as Borel measures within the class of bounded m − cv functions. Several basic
properties of these measures were also proven.
In the present work, more significant properties of such measures are established, including uniform
estimates for the integral mean values of the Hessians H k (u), k = 1,2,...,n − m + 1, within the
class of bounded m − cv functions.
1. Aleksandrov A.D., Intrinsic geometry of convex surfaces. OGIZ, Moscow, 1948; German transl., Akademie-
Verlag, Berlin, 1955.
2. Aleksandrov A.D., Konvexe Polyeder. Akademie-Verlag, Berlin 1958.
3. Bakelman I.J., Convex Analysis and Nonlinear Geometric Elliptic Equations. Springer-Verlag, Berlin-
Heidelberg, 1994.
4. Bakelman I.J., Variational problems and elliptic Monge-Ampere equations. J. Differential Geometry, №
18, 1983, P. 669–999.
5. Бакельман И.Я., Вернер А.Л., Кантор Б.Е.. Введение в дифференциальную геометрию "В целом"М.:
Наука, 1973.
6. Blocki Z., Weak solutions to the complex Hessian equation. Ann.Inst. Fourier, Grenoble, V.5, 2005, P.
1735–1756.
7. Брело М., Основы классической теории потенциала. М., ИЛ, 1964.
8. Буземан Г., Выпуклые поверхности, “Наука”, 1964.
9. Погорелов А. В., Внешняя геометрия выпуклых поверхностей, Наука, М., 1969.
10. Позняк Э.Г., Примеры регулярных метрик на сфере и в круге, ненереализуемых в классе дважды
непрерывно дифференцируемых поверхностей, Вестник МГУ, сер. матем., 2, 1960, C. 3-5.
11. Садуллаев А., Абдуллаев Б., Теория потенциалов в классе cубгармонических функций. Труды Ма-
тематического Института имени В.А. Стеклова, N 279, 2012, C. 166-192.
12. Caffarelly L., Nirenberg L., Spruck J., Functions of the eigenvalues of the Hessian. Acta Math. 155, 1985,
C.261-301.
13. Chou K.S., Wang X.J., Variational theoryfor Hessian equations. Comm. Pure Appl. Math., 54, 2001, P.
1029-1064.
14. Dinew S., Kolodziej S., A priori estimates for the complex Hessian equation. Anal. PDE, V.7, 2014, P.
227-244.
15. Dinew S., Kolodziej S., Non standard properties of m-subahrmonic functions. Dolom. Res. Not. Approx.
11, 2018, P. 35-50.
16. Ivochkina N.M., Trudinger N.S., Wang X.J., The Dirichlet problem for degenerate Hessian equations.
Comm. Partial Difi. Eqns 29, 2004, P. 219-235.
17. Li S.Y., On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex
Hessian. Asian J.Math., V.8, 2004, P. 87-106.
18. Lu C.H. A variational approach to complex Hessian equations in . Journal of Mathematical Analysis and
Applications. V. 431:1, 2015, P. 228-259.
19. Lu H.Ch. Solutions to degenerate Hessian equations. Jurnal de Mathematique Pures et Appliques. V.
100:6, 2013, P. 785-805.
20. Trudinger N.S. and Wang X. J., Hessian measures I. Topol. Methods Non linear Anal. V.19. 1997, P.
225-239.
21. Trudinger N.S. and Wang X. J., Hessian measures II. Ann. Math. V.150 ,1999, P. 1-23.
22. Trudinger N.S. and Wang X. J., Hessian measures III. Ann. Math. V.150, 2002, P. 579-604.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





