PIFAGOR UCHLIGINING FRAKTAL XOSSALARI
The paper shows the relationships between the hypotenuse of a right triangle and an equilateral
triangle, the relationships between an equilateral triangle and an n-dimensional Pythagorean brick
in the space Rn. This paper shows equilateral and fractal relationships between right triangles in
figures and diagrams. An equation with an additional parameter r 2 Z generating the edges and
diagonals of the Euler brick is given, and one example is given.
1. A. A’zamov.Eyler g‘ishtlari. Fizika, matematika va informatika. 2012. No 1, 52-56.
2. Abdullayev J.I., Ibragimov H. H. Pifagor taxtasi yordamida Pifagor g‘ishtlarini qurish. Ilmiy
axborotnoma. Samarqand, 1-son(119), 2020. 15-21.
3. Abdullayev J.I., Ibragimov H. H.Pifagor va Eyler g‘ishtlari. Buxoro davlat universiteti Ilmiy axboroti.
Buxoro, 2022/6(94). 10-15.
4. Abdullayev J.I., Ibragimov H. H. Pifagor va Eyler g‘ishtlari uchun parametrik tenglamalar. Ilmiy
axborotnoma. Samarqand, No 3/(139) 2023.29-34.
5. H.H.Ibragimov.Pifagor sonlari va Eyler g’ishti.Tadbirkorlik va pedagogika.Ilmiy-uslubiy jurnal. 2023-
yil, 1-son , 198-207 betlar.
6. By Samuel Bonaya Buya end Whiteeagle Joshua Daddah. A method of Finding Perfect Euler Bricks.
07.01.2017. 1-15.
7. Oliver Knill. Treasure Hunting Perfect Eyler bricks. 24.02.2009. 1-5 .
8. Å.À.Ãîðèí, Ñòåïåíè ïðîñòûõ ÷èñåë â ñîñòàâå ïèôàãîðîâûõ òðîåêá Ìàòåì. ïðîñâ., 2008, âûïóñê
12. 25.02. 2023 ã. 106-107 ñò.
9. Âîðîí À.Â. Ñïîñîá ïîëó÷åíèÿ ýéëåðîâûõ ïàðàëëåëåïèïåäîâ íà îñíîâå çíà÷åíèé êîòàíãåíñà ïè-
ôàãîðîâûõ òðîåê.24.03.2024.
10. Dickson L.E. History of the theory of numbers. Volume II: Diophantine analysis. Chelsea Publishing
Co., New York, 1966.
11. Long, Calvin T. Elementary Introduction to Number Theory. 2nd ed. – Lexington: D. C. Heath and
Company, LCCN 77-171950, 1972. – 46 p.
12. Leech J. The rational cuboid revisited // American Mathematical Monthly, 1977. Vol. 84, No. 7.PP.
518–533.
13. Pocklington H.C. Some Diophantine impossibilities // Proceedings Cambridge Philosophical Society,
18, 1912, PP. 110–118.
14. Spohn W.On the integral cuboid // American Mathematical Monthly, 1972. Vol. 79, No 1. PP. 57–59.
15. Buya S. B. Simple algebraic profs. of Fermat’s last theorem // Advances in Applied science research,
2017. Vol. 8, No. 3. PP. 60–64.
16. Edgar T. Euler Bricks // Mathematics Magazine, 2022. Vol. 95 No. 4. PP. 401–402.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





