PIFAGOR UCHLIGINING FRAKTAL XOSSALARI
##submission.downloads##
To‘g‘ri burchakli uchburchak gipotenuzasida katetlari yordamida ajratilgan kesmalar bilan teng yonli
uchburchak orasidagi bog‘lanishlar, teng yonli uchburchak va Rn fazoda n o‘lchamli Pifagor g‘ishti
orasidagi bog’lanishlar ko‘rsatilgan. Hamda bu ishda teng yonli va to‘g‘ri burchakli uchburchaklar
orasidagi fraktal bog’lanishlar chizma hamda sxemalarda aks ettirilgan. Eyler g‘ishtining qirralari
va diagonalini hosil qiluvchi qo‘shimcha r 2 Z parametrli tenglama keltirilgan.
1. A. A’zamov.Eyler g‘ishtlari. Fizika, matematika va informatika. 2012. No 1, 52-56.
2. Abdullayev J.I., Ibragimov H. H. Pifagor taxtasi yordamida Pifagor g‘ishtlarini qurish. Ilmiy
axborotnoma. Samarqand, 1-son(119), 2020. 15-21.
3. Abdullayev J.I., Ibragimov H. H.Pifagor va Eyler g‘ishtlari. Buxoro davlat universiteti Ilmiy axboroti.
Buxoro, 2022/6(94). 10-15.
4. Abdullayev J.I., Ibragimov H. H. Pifagor va Eyler g‘ishtlari uchun parametrik tenglamalar. Ilmiy
axborotnoma. Samarqand, No 3/(139) 2023.29-34.
5. H.H.Ibragimov.Pifagor sonlari va Eyler g’ishti.Tadbirkorlik va pedagogika.Ilmiy-uslubiy jurnal. 2023-
yil, 1-son , 198-207 betlar.
6. By Samuel Bonaya Buya end Whiteeagle Joshua Daddah. A method of Finding Perfect Euler Bricks.
07.01.2017. 1-15.
7. Oliver Knill. Treasure Hunting Perfect Eyler bricks. 24.02.2009. 1-5 .
8. Å.À.Ãîðèí, Ñòåïåíè ïðîñòûõ ÷èñåë â ñîñòàâå ïèôàãîðîâûõ òðîåêá Ìàòåì. ïðîñâ., 2008, âûïóñê
12. 25.02. 2023 ã. 106-107 ñò.
9. Âîðîí À.Â. Ñïîñîá ïîëó÷åíèÿ ýéëåðîâûõ ïàðàëëåëåïèïåäîâ íà îñíîâå çíà÷åíèé êîòàíãåíñà ïè-
ôàãîðîâûõ òðîåê.24.03.2024.
10. Dickson L.E. History of the theory of numbers. Volume II: Diophantine analysis. Chelsea Publishing
Co., New York, 1966.
11. Long, Calvin T. Elementary Introduction to Number Theory. 2nd ed. – Lexington: D. C. Heath and
Company, LCCN 77-171950, 1972. – 46 p.
12. Leech J. The rational cuboid revisited // American Mathematical Monthly, 1977. Vol. 84, No. 7.PP.
518–533.
13. Pocklington H.C. Some Diophantine impossibilities // Proceedings Cambridge Philosophical Society,
18, 1912, PP. 110–118.
14. Spohn W.On the integral cuboid // American Mathematical Monthly, 1972. Vol. 79, No 1. PP. 57–59.
15. Buya S. B. Simple algebraic profs. of Fermat’s last theorem // Advances in Applied science research,
2017. Vol. 8, No. 3. PP. 60–64.
16. Edgar T. Euler Bricks // Mathematics Magazine, 2022. Vol. 95 No. 4. PP. 401–402.
Mulkiiyat (c) 2025 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..






.jpg)

.png)





