AN INVERSE PROBLEM FOR A LOADED DEGENERATE FRACTIONAL ORDER DIFFUSION EQUATION WITH INVOLUTION PERTURBATION
Данная работа посвящена изучению обратной задачи для нагруженного вырождающегося
диффузионного уравнения дробного порядка с возмущением инволютивного типа. Доказана
теорема существования и единственности решения сформулированной задачи.
1. B. Ahmad, A. Alsaedi, M. Kirane, and R. G. Tapdigoglu, “An inverse problem for space and time fractional
evolutionequations with an involution perturbation”, Quaestiones Math-ematicae, vol. 40, no. 2, pp. 151-
160, 2017.
2. A. Cabada and A. F. Tojo, “Equations with involutions”, in Proceedings of the Workshop on Differential
Equations, p. 240, Malla Moravka, Czech Republic, March, 2014, http://users.math.cas.cz/.
3. M. Kirane., M. A. Sadybekov., A. A. Sarsenbi. On an inverse problem of reconstructing a subdiffusion
process from nonlocal data. Math Meth Appl Sci. 2019;1-10. https://doi.org/10.1002/mma.5498
4. A. Ashyralyev, A. M. Sarsenbi, Well-posedness of an elliptic equation with involution, Electron. J. Differ.
Equ. 2015 (284) (2015) 18.
5. M. A. Sadybekov, G. Dildabek, and M.B. Ivanova. On an Inverse Problem of Reconstructing a Heat
Conduction Process from Nonlocal. Data HindawiAdvances in Mathematical PhysicsVolume 2018, Article
ID 8301656, 8 pageshttps://doi.org/10.1155/2018/8301656
6. M. Kirane, N. Al-Salti, Inverse problems for a nonlocal wave equation with an involution perturbation, J.
Nonlinear Sci. Appl., 9 (2016) 12431251
7. Burlutskayaa M. Sh., Khromov A. P. Fourier Method in an Initial-Boundary Value Problem for a First-
Order Partial Differential Equation 16 with Involution. Computational Mathematics and Mathematical
Physics. 2011. Vol. 51, Issue 1, pp. 2102-2114.
8. M. Kirane, B. Samet, B.T. Torebek. Determination of an unknown source term temperature distribution
for the sub-diffusion equation at the initial and final data // Electron. J. Diff. Equat.2017:257, 1-13. 2017.
9. Nasser Al-Salti, Mokhtar Kirane, Berikbol T.Torebek. On a class of inverse problems for a heat equation
with involution perturbation. arXiv:1612.01419v2 [math.AP] 23 Aug 2017
10. Torebek, B.T., Tapdigoglu, R.: Some inverse problems for the nonlocal heat equation with Caputo
fractional derivative. Math. Methods Appl. Sci. 40, 6468-6479 (2017). https://doi.org/10.1002/mma.4468
11. Ahmad, B., Alsaedi, A., Kirane, M., Tapdigoglu, R.G.: An in-verse problem for space and time
fractional evolution equations with an involution perturbation. Quaest. Math. 40(2), 151-160 (2017).
https://doi.org/10.2989/16073606.2017. 1283370
12. B. Kh. Turmetov, B. J. Kadirkulov. An Inverse Problem for a Parabolic Equation with Involution.
Lobachevskii Journal of Mathematics 42(12).pp.3006-3015. 2021.
13. A.A.Kilbas, Hari M. Srivastava, and Juan J.Trujillo, Theory and applications of fractional differential
equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
MR2218073(2007a:34002). Zbl 1092.45003, P. 45-53, 69-79, 242-251.
14. R. Ashurov., B. Kadirkulov., O. Ergashev, Inverse problem of Bitsadze-Samarskii type for a two-
dimensional parabolic equation of fractional order. Journal of Mathematical Sciences, Vol. 274, No. 2,
August, 203.
15. L. Boudabsa., T. Simon. Some Properties of the Kilbas-Saigo Function. Mathematics, 9, 217, 2021, P.
13-19.
16. E.I. Moiseev. The basis property for systems of sines and cosines. In Dokl. Akad. Nauk SSSR, volume 275,
pages 794в-798, 1984.
Copyright (c) 2025 «ВЕСТНИК НУУз»

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.






.jpg)

2.png)





