AN INVERSE PROBLEM FOR A LOADED DEGENERATE FRACTIONAL ORDER DIFFUSION EQUATION WITH INVOLUTION PERTURBATION
##submission.downloads##
Ushbu ish involyutsiya bilan buzilgan kasr tartibli diffuziya tenglamasi uchun teskari masalani
o‘rganishga bag‘ishlangan. Qo‘yilgan masala uchun yechimning mavjudligi va yagonaligi teoremasi
isbotlandi.
1. B. Ahmad, A. Alsaedi, M. Kirane, and R. G. Tapdigoglu, “An inverse problem for space and time fractional
evolutionequations with an involution perturbation”, Quaestiones Math-ematicae, vol. 40, no. 2, pp. 151-
160, 2017.
2. A. Cabada and A. F. Tojo, “Equations with involutions”, in Proceedings of the Workshop on Differential
Equations, p. 240, Malla Moravka, Czech Republic, March, 2014, http://users.math.cas.cz/.
3. M. Kirane., M. A. Sadybekov., A. A. Sarsenbi. On an inverse problem of reconstructing a subdiffusion
process from nonlocal data. Math Meth Appl Sci. 2019;1-10. https://doi.org/10.1002/mma.5498
4. A. Ashyralyev, A. M. Sarsenbi, Well-posedness of an elliptic equation with involution, Electron. J. Differ.
Equ. 2015 (284) (2015) 18.
5. M. A. Sadybekov, G. Dildabek, and M.B. Ivanova. On an Inverse Problem of Reconstructing a Heat
Conduction Process from Nonlocal. Data HindawiAdvances in Mathematical PhysicsVolume 2018, Article
ID 8301656, 8 pageshttps://doi.org/10.1155/2018/8301656
6. M. Kirane, N. Al-Salti, Inverse problems for a nonlocal wave equation with an involution perturbation, J.
Nonlinear Sci. Appl., 9 (2016) 12431251
7. Burlutskayaa M. Sh., Khromov A. P. Fourier Method in an Initial-Boundary Value Problem for a First-
Order Partial Differential Equation 16 with Involution. Computational Mathematics and Mathematical
Physics. 2011. Vol. 51, Issue 1, pp. 2102-2114.
8. M. Kirane, B. Samet, B.T. Torebek. Determination of an unknown source term temperature distribution
for the sub-diffusion equation at the initial and final data // Electron. J. Diff. Equat.2017:257, 1-13. 2017.
9. Nasser Al-Salti, Mokhtar Kirane, Berikbol T.Torebek. On a class of inverse problems for a heat equation
with involution perturbation. arXiv:1612.01419v2 [math.AP] 23 Aug 2017
10. Torebek, B.T., Tapdigoglu, R.: Some inverse problems for the nonlocal heat equation with Caputo
fractional derivative. Math. Methods Appl. Sci. 40, 6468-6479 (2017). https://doi.org/10.1002/mma.4468
11. Ahmad, B., Alsaedi, A., Kirane, M., Tapdigoglu, R.G.: An in-verse problem for space and time
fractional evolution equations with an involution perturbation. Quaest. Math. 40(2), 151-160 (2017).
https://doi.org/10.2989/16073606.2017. 1283370
12. B. Kh. Turmetov, B. J. Kadirkulov. An Inverse Problem for a Parabolic Equation with Involution.
Lobachevskii Journal of Mathematics 42(12).pp.3006-3015. 2021.
13. A.A.Kilbas, Hari M. Srivastava, and Juan J.Trujillo, Theory and applications of fractional differential
equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
MR2218073(2007a:34002). Zbl 1092.45003, P. 45-53, 69-79, 242-251.
14. R. Ashurov., B. Kadirkulov., O. Ergashev, Inverse problem of Bitsadze-Samarskii type for a two-
dimensional parabolic equation of fractional order. Journal of Mathematical Sciences, Vol. 274, No. 2,
August, 203.
15. L. Boudabsa., T. Simon. Some Properties of the Kilbas-Saigo Function. Mathematics, 9, 217, 2021, P.
13-19.
16. E.I. Moiseev. The basis property for systems of sines and cosines. In Dokl. Akad. Nauk SSSR, volume 275,
pages 794в-798, 1984.
Mulkiiyat (c) 2025 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..






.jpg)

.png)





