QIZDIRISH VA ELEKTROD MATERIALINI BOSHQARISH ORQALI NiO YUPQA QAVATLARIDA MEMRISTIV XATTI-HARAKATNI SHAKLLANTIRISH
##submission.downloads##
Nikel oksid (NiO) yupqa qatlamlari sol–gel aylantirish (spin-coating) usuli bilan sintez qilinib, 400 °C da 2 va 5 soat davomida termik ishlov berildi. Post-annealing (qayta qizdirish) vaqtining memristiv xatti-harakatga ta’sirini o‘rganish maqsad qilingan. Yuqori elektrod sifatida kumush (Ag) va indiy (In) materiallari ishlatildi. Optik energiya oralig‘i (bandgap) yutilish spektridan (reflectance) olingan Tauc grafiklari yordamida aniqlandi. Struktura xossalari rentgen difraksiyasi (XRD) orqali o‘rganildi, memristiv xatti-harakat esa Keithley-2460 SourceMeter qurilmasi yordamida tok–kuchlanish (I–V) o‘lchovlari orqali baholandi. Tadqiqot natijalari shuni ko‘rsatdiki, qizdirish vaqti hamda elektrod turi o’tish xatti-harakati va material xossalariga sezilarli darajada ta’sir qiladi.
1. S. Tappertzhofen, D. Valov, and R. Waser, "Dependence of the electrical switching behavior in Ag/oxide-based memristive systems on the electrode material," Nanotechnology, vol. 23, no. 14, p. 145703, 2012.
2. D. Ielmini and R. Waser, Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Wiley-VCH, 2015.
3. T. Chen, C. Liao, J. Liu, and L. Wang, "Preparation of NiO thin films by sol–gel method and their application in solar cells," Journal of Alloys and Compounds, vol. 509, no. 5, pp. 2316–2319, 2011.
4. Z. Wang, H. Wu, G. Burr, et al., "Resistive switching materials for information processing," Nature Reviews Materials, vol. 5, no. 3, pp. 173–195, 2020.
5. S. Yu, "Resistive random access memory (RRAM) materials and devices: Modeling and applications," Materials Today, vol. 18, no. 5, pp. 252–264, 2015.
6. M. Lanza, "A review on resistive switching in high-k dielectrics: A nanoscale point of view using conductive atomic force microscope (CAFM)," Materials, vol.
7, no. 3, pp. 2155–2182, 2014. 7. J. Yao, Z. Sun, L. Zhong, et al., "Resistive switching in nanogap systems on SiO₂ substrates," Nano Letters, vol. 10, no. 10, pp. 4105–4110, 2010.
8. C. H. Ahn, J. W. Lee, and H. J. Lee, "Growth and characterization of p-type NiO thin films by sputtering," Journal of Applied Physics, vol. 92, no. 6, pp. 3684–3687, 2002.
9. Z. Zhang, M. Zhu, and Y. Li, "Preparation of NiO thin films for resistive switching memories," Journal of Materials Science: Materials in Electronics, vol. 23, no. 3, pp. 636–640, 2012. 10. D. Lee, S. Lee, and H. Hwang, "Resistance switching of NiO thin films for nonvolatile memory applications," Applied Physics Letters, vol. 90, no. 12, p. 122104, 2007.
11. M. H. Lee, J. W. Park, and S. H. Kim, "Annealing effect on electrical properties of NiO thin films," Journal of the Korean Physical Society, vol. 56, no. 1, pp. 132–136, 2010.
12. R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nature Materials, vol. 6, no. 11, pp. 833–840, 2007. 13. J. Yao, Z. Sun, and L. Zhong, "Resistive switching in nanogap systems on SiO₂ substrates," Nano Letters, vol. 10, no. 10, pp. 4105–4110, 2010.
14. G. Bersuker, "Metal oxide resistive memory switching mechanism based on conductive filament properties," Journal of Applied Physics, vol. 110, no. 12, p. 124518, 2011.
15. S. Yu, "Resistive random access memory (RRAM) materials and devices: Modeling and applications," Materials Today, vol.
18, no. 5, pp. 252–264, 2015. 16. Z. Wang, H. Wu, G. Burr, et al., "Resistive switching materials for information processing," Nature Reviews Materials, vol. 5, no. 3, pp. 173–195, 2020.
Mulkiiyat (c) 2025 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..






.jpg)

.png)





