MORPHOLOGICAL AND STRUCTURAL PROPERTIES OF COATINGS OBTAINED BY MAGNETRON SPUTTERING AND VACUUM ARC METHODS
Versions
- 01-07-2025 (2)
- 01-07-2025 (1)
Imparting wear-resistant and corrosion-resistant properties to the surfaces of products is one of the main tasks of the modern economy. In this work, the properties of titanium nitride coatings applied by magnetron sputtering and vacuum arc methods were studied and compared. The coatings obtained by these two methods are structurally similar; however, their surface uniformity differ significantly.
1. Mikhailov B. I. Arc spot scanning of tube electrodes in gas-vortex plasmatorches //Thermophysics and Aeromechanics. – 2008. – Т. 15. – №. 2. – PP. 307-320. https://link.springer.com/content/pdf/10.1134/ S0869864308020145. pdf
2. PalDey S., Deevi S. C. Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review //Materials Science and Engineering: A. – 2003. – Т. 342. – №. 1-2. – PP. 58-79. https://doi.org/10.1016/S0921-5093(02)00259-9
3. Voevodin A. A., Zabinski J. S. Supertough wear-resistant coatings with ‘chameleon’surface adaptation //Thin Solid Films. – 2000. – Т. 370. – №. 1-2. – PP. 223-231. https://doi.org/10.1016/S0040-6090(00)00917-2
4. Gnedenkov S. V. et al. Production of hard and heat-resistant coatings on aluminium using a plasma micro-discharge //Surface and Coatings Technology. – 2000. – Т. 123. – №. 1. – PP. 24-28. https://doi.org/10.1016/S0257-8972(99)00421-1 5. Cui G. et al. A comprehensive review on smart anti-corrosive coatings //Progress in Organic Coatings. – 2020. – Т. 148. – PP. 105821. https://doi.org/10.1016/j.porgcoat.2020.105821
6. Budke E. et al. Decorative hard coatings with improved corrosion resistance //Surface and Coatings Technology. – 1999. – Т. 112. – №. 1-3. – PP. 108-113. https://doi.org/10.1016/S0257-8972(98)00791-9
7. Hill M. T. et al. Lasing in metallic-coated nanocavities //Nature Photonics. – 2007. – Т. 1. – №. 10. – PP. 589-594. https://doi.org/10.1038/nphoton.2007.171
8. Remcho V. T., Tan Z. J. Peer Reviewed: MIPs as Chromatographic Stationary Phases for Molecular Recognition //Analytical chemistry. – 1999. – Т. 71. – №. 7. – PP. 248A-255A. https://doi.org/10.1021/ac990292q
9. Nwaogu U. C. et al. New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality //Surface and Coatings Technology. – 2011. – Т. 205. – №. 16. – PP. 4035-4044. https://doi.org/10.1016/j.surfcoat.2011.02.042 10. Mullangi D. et al. Super-hydrophobic covalent organic frameworks for chemical resistant coatings and hydrophobic paper and textile composites //Journal of Materials Chemistry A. – 2017. – Т. 5. – №. 18. – PP. 83768384.https://doi.org/10.1039/C7TA01302G
11. Prasad K. et al. Highly reflective coatings //Int J Appl Eng Res. – 2018. – Т. 13. – №. 22. – PP. 15773-15782. https://doi.org/10.1007/s42452-019-1169-x 12. Knittel S. et al. Development of silicide coatings to ensure the protection of Nb and silicide composites against high temperature oxidation //Surface and Coatings Technology. – 2013. – Т. 235. – PP. 401-406. https://doi.org/10.1016/j.surfcoat.2013.07.053 13. Medvedovski E. Formation of Corrosion‐Resistant Thermal Diffusion Boride Coatings //Advanced Engineering Materials. – 2016. – Т. 18. – №. 1. – PP. 11-33. https://doi.org/10.1002/adem.201500102
14. Mahade S. et al. Exploiting suspension plasma spraying to deposit wear-resistant carbide coatings //Materials. – 2019. – Т. 12. – №. 15. – PP. 2344. https://doi.org/10.3390/ma12152344 15. Gu Y. et al. Technical characteristics and wear-resistant mechanism of nano coatings: a review //Coatings. – 2020. – Т. 10. – №. 3. – p. 233. https://doi.org/10.3390/coatings10030233 16. Musil J., Jankovcova H., Cibulka V. Formation of Ti1–x Si x and Ti1–x Si x N films by magnetron co-sputtering //Czechoslovak journal of physics. – 1999. – Т. 49. – №. 3. – PP. 359-372. https://link.springer.com/content/pdf/10.1023/A:1022853101763.pdf
17. Jiao J., Seraphin S. Carbon encapsulated nanoparticles of ni, co, cu, and ti //Journal of Applied Physics. – 1998. – Т. 83. – №. 5. – PP. 2442-2448. https://doi.org/10.1063/1.367004
18. Patsalas P., Kalfagiannis N., Kassavetis S. Optical properties and plasmonic performance of titanium nitride //Materials. – 2015. – Т. 8. – №. 6. – С. 3128-3154. https://doi.org/10.3390/ma8063128 19. Yu C., Jiang S., Lu R. High order harmonic generation in solids: a review on recent numerical methods //Advances in Physics: X. – 2019. – Т. 4. – №. 1. – PP. 1562982. https://doi.org/10.1080/23746149.2018.1562982 20. Diroll B. T. et al. Broadband ultrafast dynamics of refractory metals: TiN and ZrN //Advanced Optical Materials. – 2020. – Т. 8. – №.
19. – PP. 2000652. 10.1109/RAPID54473.2023.10264707 21. Novaković M. et al. Low optical losses in plasmonic TiN thin films implanted with silver and gold //Optical Materials. – 2022. – Т. 123. – PP. 111936. https://doi.org/10.1016/j.optmat.2021.111936
22. Bolotskaia A. et al. Coatings prepared by electro-spark alloying with SHS electrode materials based on Ti-B-Fe-AlN //Coatings. – 2023. – Т. 13. – №. 7. – p. 1264. https://doi.org/10.3390/coatings13071264
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





