МОРФОЛОГИЧЕСКИЕ И СТРУКТУРНЫЕ СВОЙСТВА ПОКРЫТИЙ, ПОЛУЧЕННЫХ МЕТОДАМИ МАГНЕТРОННОГО РАСПЫЛЕНИЯ И ВАКУУМНО-ДУГОВОГО ОСАЖДЕНИЯ
Версии
- 2025-07-01 (2)
- 2025-07-01 (1)
Придание поверхностям изделий износостойкости и коррозионной стойкости является одной из приоритетных задач современной промышленности. В настоящем исследовании проведён комплексный анализ и сравнительное сопоставление свойств нитрида титана (TiN)-покрытий, осаждённых методами магнетронного распыления и вакуумной дуговой технологии. Установлено, что, несмотря на аналогичность их структурных характеристик, покрытия значительно различаются по однородности поверхности
1. Mikhailov B. I. Arc spot scanning of tube electrodes in gas-vortex plasmatorches //Thermophysics and Aeromechanics. – 2008. – Т. 15. – №. 2. – PP. 307-320. https://link.springer.com/content/pdf/10.1134/ S0869864308020145. pdf
2. PalDey S., Deevi S. C. Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review //Materials Science and Engineering: A. – 2003. – Т. 342. – №. 1-2. – PP. 58-79. https://doi.org/10.1016/S0921-5093(02)00259-9
3. Voevodin A. A., Zabinski J. S. Supertough wear-resistant coatings with ‘chameleon’surface adaptation //Thin Solid Films. – 2000. – Т. 370. – №. 1-2. – PP. 223-231. https://doi.org/10.1016/S0040-6090(00)00917-2
4. Gnedenkov S. V. et al. Production of hard and heat-resistant coatings on aluminium using a plasma micro-discharge //Surface and Coatings Technology. – 2000. – Т. 123. – №. 1. – PP. 24-28. https://doi.org/10.1016/S0257-8972(99)00421-1 5. Cui G. et al. A comprehensive review on smart anti-corrosive coatings //Progress in Organic Coatings. – 2020. – Т. 148. – PP. 105821. https://doi.org/10.1016/j.porgcoat.2020.105821
6. Budke E. et al. Decorative hard coatings with improved corrosion resistance //Surface and Coatings Technology. – 1999. – Т. 112. – №. 1-3. – PP. 108-113. https://doi.org/10.1016/S0257-8972(98)00791-9
7. Hill M. T. et al. Lasing in metallic-coated nanocavities //Nature Photonics. – 2007. – Т. 1. – №. 10. – PP. 589-594. https://doi.org/10.1038/nphoton.2007.171
8. Remcho V. T., Tan Z. J. Peer Reviewed: MIPs as Chromatographic Stationary Phases for Molecular Recognition //Analytical chemistry. – 1999. – Т. 71. – №. 7. – PP. 248A-255A. https://doi.org/10.1021/ac990292q
9. Nwaogu U. C. et al. New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality //Surface and Coatings Technology. – 2011. – Т. 205. – №. 16. – PP. 4035-4044. https://doi.org/10.1016/j.surfcoat.2011.02.042 10. Mullangi D. et al. Super-hydrophobic covalent organic frameworks for chemical resistant coatings and hydrophobic paper and textile composites //Journal of Materials Chemistry A. – 2017. – Т. 5. – №. 18. – PP. 83768384.https://doi.org/10.1039/C7TA01302G
11. Prasad K. et al. Highly reflective coatings //Int J Appl Eng Res. – 2018. – Т. 13. – №. 22. – PP. 15773-15782. https://doi.org/10.1007/s42452-019-1169-x 12. Knittel S. et al. Development of silicide coatings to ensure the protection of Nb and silicide composites against high temperature oxidation //Surface and Coatings Technology. – 2013. – Т. 235. – PP. 401-406. https://doi.org/10.1016/j.surfcoat.2013.07.053 13. Medvedovski E. Formation of Corrosion‐Resistant Thermal Diffusion Boride Coatings //Advanced Engineering Materials. – 2016. – Т. 18. – №. 1. – PP. 11-33. https://doi.org/10.1002/adem.201500102
14. Mahade S. et al. Exploiting suspension plasma spraying to deposit wear-resistant carbide coatings //Materials. – 2019. – Т. 12. – №. 15. – PP. 2344. https://doi.org/10.3390/ma12152344 15. Gu Y. et al. Technical characteristics and wear-resistant mechanism of nano coatings: a review //Coatings. – 2020. – Т. 10. – №. 3. – p. 233. https://doi.org/10.3390/coatings10030233 16. Musil J., Jankovcova H., Cibulka V. Formation of Ti1–x Si x and Ti1–x Si x N films by magnetron co-sputtering //Czechoslovak journal of physics. – 1999. – Т. 49. – №. 3. – PP. 359-372. https://link.springer.com/content/pdf/10.1023/A:1022853101763.pdf
17. Jiao J., Seraphin S. Carbon encapsulated nanoparticles of ni, co, cu, and ti //Journal of Applied Physics. – 1998. – Т. 83. – №. 5. – PP. 2442-2448. https://doi.org/10.1063/1.367004
18. Patsalas P., Kalfagiannis N., Kassavetis S. Optical properties and plasmonic performance of titanium nitride //Materials. – 2015. – Т. 8. – №. 6. – С. 3128-3154. https://doi.org/10.3390/ma8063128 19. Yu C., Jiang S., Lu R. High order harmonic generation in solids: a review on recent numerical methods //Advances in Physics: X. – 2019. – Т. 4. – №. 1. – PP. 1562982. https://doi.org/10.1080/23746149.2018.1562982 20. Diroll B. T. et al. Broadband ultrafast dynamics of refractory metals: TiN and ZrN //Advanced Optical Materials. – 2020. – Т. 8. – №.
19. – PP. 2000652. 10.1109/RAPID54473.2023.10264707 21. Novaković M. et al. Low optical losses in plasmonic TiN thin films implanted with silver and gold //Optical Materials. – 2022. – Т. 123. – PP. 111936. https://doi.org/10.1016/j.optmat.2021.111936
22. Bolotskaia A. et al. Coatings prepared by electro-spark alloying with SHS electrode materials based on Ti-B-Fe-AlN //Coatings. – 2023. – Т. 13. – №. 7. – p. 1264. https://doi.org/10.3390/coatings13071264
Copyright (c) 2025 «ВЕСТНИК НУУз»

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.






.jpg)

2.png)





