НЕКОТОРЫЕ СВОЙСТВА ПРОСТРАНСТВА τ-ЗАМКНУТЫХ ПОДМНОЖЕСТВ
This article investigates some properties of the space of τ-closed subsets of topological T 1 -spaces X.
In the family of τ-closed subsets, a base similar to the Vietoris topology is introduced. It is proven
that if X is a T 1 -space and X 0 ⊂ X, then the set {F : F ∈ exp τ X, X 0 ⊂ F} is closed in the space
exp τ X. It is also proven that if X is a T 1 -space, then the space exp τ X is also a T 1 -space. It is shown
that if Y is the everywhere τ-dense subset T 1 of the X space, then exp τ Y is the everywhere exp τ X
space. Similarly, if exp τ Y is everywhere dense in the space exp τ X, then it is shown that the space
Y is everywhere τ-dense in X. The analogy of Michael’s theorem for the density of the T 1 -space is
proven, i.e., let X be an infinite T 1 -space, then d τ (X) ≤ d τ (exp τ X). It is shown that if X is an
infinite T 1 -space and U is a τ-open subset, then any τ-open subset in U is a τ-open subset in X.
1. Федорчук В.В., Филиппов В.В., Общая топология: Основные конструкции, Москва, ФИЗМАТЛИТ,
2006, 117.
2. I.Juhasz, Cardinal Functions in Topology - Ten Years Later, Mathematisch Centrum, Amsterdam, 1980,
13-14.
3. Okunev O., The minitightness of products, Topology and its Applications 208 (2016), 10-16.
4. Georgiou, N. K. Mamadaliev, R. M. Zhuraev, A Note on Functional Tightness and Minitightness of Space
of the G-Permutation Degree, Comment. Math. Univ. Carolin., 2023.
5. Arhangel’skii A.V., Functional tightness, Q-spaces, and τ-embeddings, Commentationes Mathematicae
Universitatis Carolinae 24(1) (1983) 105-119.
6. Бешимов Р. Б., Мамадалиев Н. К., Манасыпова Р. З., О некоторых свойствах τ-границы множества,
Вестник НУУз, 2023, 176-183.
7. Beshimov R.B., D.N.Georgiou, R.M.Juraev, R.Z.Manasipova, F.Sereti, Some topological
properties of e-space and description of τ-closed sets, Filomat 39:8 (2025), 2625-2637,
https://doi.org/10.2298/FIL2508625B.
8. Beshimov R.B., R.M.Juraev, R.Z.Manasipova, On τ-base and e-density of topological spaces, Filomat
39:10 (2025), 3353-3358 https://doi.org/10.2298/FIL2510353B
9. Энгелькинг Р., Общая топология, Москва, МИР, 1986, 33-34.
10. Michael, E. ,Topologies on spaces of subsets, Transactions of the American Mathematical Society, vol. 71
(1951), pp. 152-182.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





