НЕКОТОРЫЕ СВОЙСТВА ПРОСТРАНСТВА τ-ЗАМКНУТЫХ ПОДМНОЖЕСТВ
##submission.downloads##
Ushbu maqolada X topologik T 1 -fazolarining τ-yopiq qism to‘plamlari fazosining ba’zi xossalari
o‘rganiladi. τ-yopiq qism to‘plamlar oilasiga Vietoris topologiyasiga o‘xshash baza kiritiladi. Agar
X fazo T 1 -fazo va X 0 ⊂ X bo‘lsa, u holda {F : F ∈ exp τ X, X 0 ⊂ F} to‘plam exp τ X fazoda yopiq.
Shuningdek, agar X fazo T 1 -fazo bo‘lsa, u holda exp τ X fazosi ham T 1 -fazo bo‘lishi isbotlanadi. Agar
Y fazo X T 1 -fazoning zich qism to‘plami bo‘lsa, u holda exp τ Y exp τ X fazoning zich qism to‘plami
bo‘ladi. Xuddi shunday, agar exp τ Y exp τ X fazoda barcha nuqtalarda zich joylashgan bo‘lsa, u holda
Y fazo barcha nuqtalarda τ X da zich joylashganligi ko‘rsatilgan. T 1 -fazoning zichligi uchun Maykl
teoremasining analogi isbotlanadi, ya’ni X cheksiz T 1 -fazo bo‘lsin, u holda d τ (X) ≤ d τ (exp τ X).
Agar X cheksiz T 1 -fazo va U τ-ochiq qism to‘plam bo‘lsa, u holda U dagi har qanday τ-ochiq qism
to‘plam X dagi τ-ochiq qism to‘plam bo‘lishi ko‘rsatilgan.
1. Федорчук В.В., Филиппов В.В., Общая топология: Основные конструкции, Москва, ФИЗМАТЛИТ,
2006, 117.
2. I.Juhasz, Cardinal Functions in Topology - Ten Years Later, Mathematisch Centrum, Amsterdam, 1980,
13-14.
3. Okunev O., The minitightness of products, Topology and its Applications 208 (2016), 10-16.
4. Georgiou, N. K. Mamadaliev, R. M. Zhuraev, A Note on Functional Tightness and Minitightness of Space
of the G-Permutation Degree, Comment. Math. Univ. Carolin., 2023.
5. Arhangel’skii A.V., Functional tightness, Q-spaces, and τ-embeddings, Commentationes Mathematicae
Universitatis Carolinae 24(1) (1983) 105-119.
6. Бешимов Р. Б., Мамадалиев Н. К., Манасыпова Р. З., О некоторых свойствах τ-границы множества,
Вестник НУУз, 2023, 176-183.
7. Beshimov R.B., D.N.Georgiou, R.M.Juraev, R.Z.Manasipova, F.Sereti, Some topological
properties of e-space and description of τ-closed sets, Filomat 39:8 (2025), 2625-2637,
https://doi.org/10.2298/FIL2508625B.
8. Beshimov R.B., R.M.Juraev, R.Z.Manasipova, On τ-base and e-density of topological spaces, Filomat
39:10 (2025), 3353-3358 https://doi.org/10.2298/FIL2510353B
9. Энгелькинг Р., Общая топология, Москва, МИР, 1986, 33-34.
10. Michael, E. ,Topologies on spaces of subsets, Transactions of the American Mathematical Society, vol. 71
(1951), pp. 152-182.
Mulkiiyat (c) 2025 «O‘zMU XABARLARI»

Ushbu ish quyidagi litsenziya asosida ruxsatlangan Kreativ Commons Attribution-NonCommercial-ShareAlike 4.0 International litsenziyasi asosida bu ish ruxsatlangan..






.jpg)

.png)





