Численное решение нестационарной задачи оптимального размещения источников тепла с минимальной мощностью
This work is devoted to the numerical solution of the non-stationary problem of optimal placement of
heat sources of minimum power. The statement of the problem requires the simultaneous fulfillment
of two conditions. The first condition is to ensure that the temperature is within the limits of
minimum and maximum temperatures due to the optimal placement of heat sources with a minimum
power in the rectangle. The second condition is that the total power of the heat sources used for
heating is minimal. This problem was studied under stationary conditions in the works of other
scientists. However, the problem was not considered in the non-stationary case. Since it is difficult
to find a continuous solution to the boundary value problem, we are looking for a numerical solution
to the problem. It is difficult to find an integral operator with a continuous kernel (Green’s function).
The numerical value of the Green’s function is found in the form of a matrix. A new algorithm for
the numerical solution of a non-stationary optimal control problem for the placement of heat sources
with a minimum power in processes described by parabolic partial differential equations is proposed.
A new technique for numerical solution is proposed. A mathematical and numerical model of the
processes described by the convection-diffusion equation given for the first boundary value problem
is constructed. The boundary value problem is studied for the two-dimensional case. An implicit
finite difference scheme was used to solve the problem numerically. According to this scheme, a
system of difference equations was created. The formed system of difference equations is reduced to
a linear programming problem. The problem of linear programming is solved using the M-method.
For each time value, a linear programming problem is solved. A new approach to the numerical
solution of problems is proposed. A general block diagram of the algorithm for solving the non-
stationary problem of optimal control of the placement of heat sources with a minimum power is
given. An algorithm and software for the numerical solution of the problem have been developed.
A brief description of the software is given. On specific examples, it is shown that the numerical
solution of the boundary value problem is within the specified limits, the sum of optimally placed heat
sources with a minimum power gives a minimum to the functional. The results of the computational
experiment are visualized.
1. Ахметзянов А. В., Кулибанов В. Н. Задача оптимального выбора координат доразбуривания добы-
вающих скважин на нефтяных месторождениях. Автоматика и телемеханика, 2002, № 11. С. 3–12.
2. Мирская С. Ю., Сидельников В. И. Экономичный обогрев помещения как задача оптимального
управления. Технико-технологические проблемы сервиса, 2014, № 4(30). С. 75–78.
3. Сабденов К. О., Байтасов Т. М. Оптимальное (энергоэффективное) теплоснабжение здания в си-
стеме центрального отопления. Известия Томского политехнического университета. Инжиниринг
георесурсов, 2015, Т. 326, № 8. С. 53–60.
4. Исламов Г.Г., Коган Ю. В. Дифференциально-разностная задача управления процессом диффузии.
Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2008, вып. 1.
С. 121–126.
5. Егоров А. И., Знаменская Л. Н. Об управлении процессом теплопроводностис квадратичным функ-
ционалом качества. Журнал вычислительной математики и математической физики, 2017, Т. 57,
№ 12. С. 2053–2064.
6. Хайиткулов Б. Х. Конечно-разностный метод решения нестационарных задач управления
конвекцией-диффузией. Вестник Томского государственного университета. Управление, вычисли-
тельная техника и информатика, 2021, № 57. С. 45–52.
7. Khaitkulov B. Kh. Homogeneous different schemes of the problem for optimum selection of the location
of heat sources in a rectangular body. Solid State Technology, 2020, vol. 63, no 17. P. 583–592.
8. Хайиткулов Б. Х. Консервативные разностные схемы по оптимальному выбору местоположения
источников тепла в стержне. Математическое моделирование и численные методы, 2020, № 3. С. 85–
98.
9. Тухтасинов М. Т., Абдуолимова Г. М., Хайиткулов Б. Х. Граничное управление распространением
тепла в ограниченном теле. Бюллетень Института математики, 2019, № 1. С. 1–10.
10. Лебо И. Г., Симаков А. И. Решение уравнения конвекция-диффузия для моделирования теплопере-
дачи в высокотемпературных газах и плазме. Вестник МГТУ МИРЭА, 2014, № 3(4). С. 195–205.
11. Вабищевич П. Н., Самарский А. А. Разностные схемы для нестационарных задач конвекции-
диффузии. Журнал вычислительной математики и математической физики, 1998, Т. 38, № 2. С. 207–
219.
12. Самарский А. А., Вабищевич П. Н. Численные методы решения задач конвекции-диффузии.
Москва : ЛИБРОКОМ, 2015. 248 с.
13. Вабищевич П. Н., Васильева М. В. Явно-неявные схемы для задач конвекции-диффузии-реакции.
Сибирский журнал вычислительной математики, 2012, Т. 15, № 4. С. 359–369.
14. Dantzig G. B. Linear programming and extensions. Princeton : Princeton University Press, 2016. 656 p.
15. Фомин Г. П. Математические методы и модели в коммерческой деятельности: учебник. – 3-е изд.
Москва : Финансы и статистика, 2009. 640 с.
Copyright (c) 2025 «ACTA NUUz»

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






.jpg)

1.png)





